Suppr超能文献

通过同源性图谱的统计表示对前列腺活检切片进行自动Gleason分级。

Automated gleason grading on prostate biopsy slides by statistical representations of homology profile.

作者信息

Yan Chaoyang, Nakane Kazuaki, Wang Xiangxue, Fu Yao, Lu Haoda, Fan Xiangshan, Feldman Michael D, Madabhushi Anant, Xu Jun

机构信息

School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Department of Molecular Pathology, Osaka University Graduate School of Medicine, Division of Health Science, Osaka 565-0871, Japan.

出版信息

Comput Methods Programs Biomed. 2020 Oct;194:105528. doi: 10.1016/j.cmpb.2020.105528. Epub 2020 May 26.

Abstract

BACKGROUND AND OBJECTIVE

Gleason grading system is currently the clinical gold standard for determining prostate cancer aggressiveness. Prostate cancer is typically classified into one of 5 different categories with 1 representing the most indolent disease and 5 reflecting the most aggressive disease. Grades 3 and 4 are the most common and difficult patterns to be discriminated in clinical practice. Even though the degree of gland differentiation is the strongest determinant of Gleason grade, manual grading is subjective and is hampered by substantial inter-reader disagreement, especially with regard to intermediate grade groups.

METHODS

To capture the topological characteristics and the degree of connectivity between nuclei around the gland, the concept of Homology Profile (HP) for prostate cancer grading is presented in this paper. HP is an algebraic tool, whereby, certain algebraic invariants are computed based on the structure of a topological space. We utilized the Statistical Representation of Homology Profile (SRHP) features to quantify the extent of glandular differentiation. The quantitative characteristics which represent the image patch are fed into a supervised classifier model for discrimination of grade patterns 3 and 4.

RESULTS

On the basis of the novel homology profile, we evaluated 43 digitized images of prostate biopsy slides annotated for regions corresponding to Grades 3 and 4. The quantitative patch-level evaluation results showed that our approach achieved an Area Under Curve (AUC) of 0.96 and an accuracy of 0.89 in terms of discriminating Grade 3 and 4 patches. Our approach was found to be superior to comparative methods including handcrafted cellular features, Stacked Sparse Autoencoder (SSAE) algorithm and end-to-end supervised learning method (DLGg). Also, slide-level quantitative and qualitative evaluation results reflect the ability of our approach in discriminating Gleason Grade 3 from 4 patterns on H&E tissue images.

CONCLUSIONS

We presented a novel Statistical Representation of Homology Profile (SRHP) approach for automated Gleason grading on prostate biopsy slides. The most discriminating topological descriptions of cancerous regions for grade 3 and 4 in prostate cancer were identified. Moreover, these characteristics of homology profile are interpretable, visually meaningful and highly consistent with the rubric employed by pathologists for the task of Gleason grading.

摘要

背景与目的

Gleason分级系统是目前确定前列腺癌侵袭性的临床金标准。前列腺癌通常分为5种不同类别之一,1代表最惰性的疾病,5反映最具侵袭性的疾病。3级和4级是临床实践中最常见且最难区分的模式。尽管腺体分化程度是Gleason分级的最强决定因素,但人工分级具有主观性,且受阅片者之间显著的分歧影响,尤其是在中间分级组方面。

方法

为了捕捉腺体周围细胞核的拓扑特征和连接程度,本文提出了用于前列腺癌分级的同源性轮廓(HP)概念。HP是一种代数工具,据此基于拓扑空间的结构计算某些代数不变量。我们利用同源性轮廓的统计表示(SRHP)特征来量化腺体分化程度。将代表图像块的定量特征输入到监督分类器模型中,以区分3级和4级模式。

结果

基于新颖的同源性轮廓,我们评估了43张前列腺活检切片的数字化图像,这些图像标注了对应3级和4级的区域。定量图像块级评估结果表明,我们的方法在区分3级和4级图像块方面,曲线下面积(AUC)达到0.96,准确率达到0.89。我们的方法被发现优于包括手工制作的细胞特征、堆叠稀疏自动编码器(SSAE)算法和端到端监督学习方法(DLGg)在内的比较方法。此外,切片级的定量和定性评估结果反映了我们的方法在苏木精-伊红(H&E)组织图像上区分Gleason 3级和4级模式的能力。

结论

我们提出了一种用于前列腺活检切片自动Gleason分级的新颖的同源性轮廓统计表示(SRHP)方法。确定了前列腺癌中3级和4级癌区域最具区分性的拓扑描述。此外,这些同源性轮廓特征是可解释的、视觉上有意义的,并且与病理学家用于Gleason分级任务的标准高度一致。

相似文献

2
Self-Learning for Weakly Supervised Gleason Grading of Local Patterns.基于局部模式的弱监督 Gleason 分级的自学习。
IEEE J Biomed Health Inform. 2021 Aug;25(8):3094-3104. doi: 10.1109/JBHI.2021.3061457. Epub 2021 Aug 5.

引用本文的文献

3
Computational pathology: A survey review and the way forward.计算病理学:综述与未来发展方向
J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec.

本文引用的文献

4
Deep-learning approaches for Gleason grading of prostate biopsies.用于前列腺活检Gleason分级的深度学习方法。
Lancet Oncol. 2020 Feb;21(2):187-189. doi: 10.1016/S1470-2045(19)30793-4. Epub 2020 Jan 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验