Suppr超能文献

利用深度学习通过数字病理图像实现淋巴瘤的自动诊断。

Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning.

作者信息

Achi Hanadi El, Belousova Tatiana, Chen Lei, Wahed Amer, Wang Iris, Hu Zhihong, Kanaan Zeyad, Rios Adan, Nguyen Andy N D

机构信息

Department of Pathology and Laboratory Medicine, Hematopathology Section, University of Texas Health Science Center at Houston, Texas, TX, USA.

Department of Internal Medicine, Hematologic Oncology Section, University of Texas Health Science Center at Houston, Texas, TX, USA.

出版信息

Ann Clin Lab Sci. 2019 Mar;49(2):153-160.

Abstract

Recent studies have shown promising results in using Deep Learning to detect malignancy in whole slide imaging, however, they were limited to just predicting a positive or negative finding for a specific neoplasm. We attempted to use Deep Learning with a convolutional neural network (CNN) algorithm to build a lymphoma diagnostic model for four diagnostic categories: (1) benign lymph node, (2) diffuse large B-cell lymphoma, (3) Burkitt lymphoma, and (4) small lymphocytic lymphoma. Our software was written in Python language. We obtained digital whole-slide images of Hematoxylin and Eosin stained slides of 128 cases including 32 cases for each diagnostic category. Four sets of 5 representative images, 40x40 pixels in dimension, were taken for each case. A total of 2,560 images were obtained from which 1,856 were used for training, 464 for validation, and 240 for testing. For each test set of 5 images, the predicted diagnosis was combined from the prediction of five images. The test results showed excellent diagnostic accuracy at 95% for image-by-image prediction and at 100% for set-by-set prediction. This preliminary study provided a proof of concept for incorporating automated lymphoma diagnostic screen into future pathology work-flow to augment the pathologists' productivity.

摘要

最近的研究表明,在利用深度学习检测全切片成像中的恶性肿瘤方面取得了有前景的成果,然而,这些研究仅限于预测特定肿瘤的阳性或阴性结果。我们尝试使用带有卷积神经网络(CNN)算法的深度学习来构建一个针对四种诊断类别的淋巴瘤诊断模型:(1)良性淋巴结,(2)弥漫性大B细胞淋巴瘤,(3)伯基特淋巴瘤,以及(4)小淋巴细胞淋巴瘤。我们的软件是用Python语言编写的。我们获取了128例苏木精和伊红染色切片的数字全切片图像,每个诊断类别各32例。为每个病例采集了四组5张代表性图像,尺寸为40x40像素。总共获得了2560张图像,其中1856张用于训练,464张用于验证,240张用于测试。对于每组5张图像的测试集,预测诊断是通过对五张图像的预测进行综合得出的。测试结果显示,逐图像预测的诊断准确率高达95%,逐组预测的诊断准确率为100%。这项初步研究为将自动化淋巴瘤诊断筛查纳入未来病理工作流程以提高病理学家的工作效率提供了概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验