Tran Christopher T, Halicek Martin, Dormer James D, Tandon Animesh, Hussain Tarique, Fei Baowei
University of Texas at Dallas, Department of Bioengineering, Richardson, TX, USA.
Georgia Inst. of Tech. and Emory Univ., Dept. of Biomedical Engineering, Atlanta, GA.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549052. Epub 2020 Feb 28.
Cardiac magnetic resonance (CMR) imaging is considered the standard imaging modality for volumetric analysis of the right ventricle (RV), an especially important practice in the evaluation of heart structure and function in patients with repaired Tetralogy of Fallot (rTOF). In clinical practice, however, this requires time-consuming manual delineation of the RV endocardium in multiple 2-dimensional (2D) slices at multiple phases of the cardiac cycle. In this work, we employed a U-Net based 2D convolutional neural network (CNN) classifier in the fully automatic segmentation of the RV blood pool. Our dataset was comprised of 5,729 short-axis cine CMR slices taken from 100 individuals with rTOF. Training of our CNN model was performed on images from 50 individuals while validation was performed on images from 10 individuals. Segmentation results were evaluated by Dice similarity coefficient (DSC) and Hausdorff distance (HD). Use of the CNN model on our testing group of 40 individuals yielded a median DSC of 90% and a median 95 percentile HD of 5.1 mm, demonstrating good performance in these metrics when compared to literature results. Our preliminary results suggest that our deep learning-based method can be effective in automating RV segmentation.
心脏磁共振成像(CMR)被认为是对右心室(RV)进行容积分析的标准成像方式,这在法洛四联症修复术后(rTOF)患者的心脏结构和功能评估中是一项尤为重要的实践。然而,在临床实践中,这需要在心动周期的多个阶段对多个二维(2D)切片中的右心室心内膜进行耗时的手动描绘。在这项工作中,我们采用了基于U-Net的二维卷积神经网络(CNN)分类器对右心室血池进行全自动分割。我们的数据集由从100名rTOF患者获取的5729个短轴电影CMR切片组成。我们的CNN模型在来自50名个体的图像上进行训练,而在来自10名个体的图像上进行验证。分割结果通过骰子相似系数(DSC)和豪斯多夫距离(HD)进行评估。在我们的40名个体测试组上使用CNN模型得到的DSC中位数为90%,95百分位数HD中位数为5.1毫米,与文献结果相比,在这些指标上表现良好。我们的初步结果表明,我们基于深度学习的方法可以有效地实现右心室分割的自动化。