Suppr超能文献

一种基于信息学的方法来识别药物相互作用中的关键药理成分。

An Informatics-based Approach to Identify Key Pharmacological Components in Drug-Drug Interactions.

作者信息

Deng Jianyuan, Wang Fusheng

机构信息

Department of Biomedical Informatics, Stony Brook University.

Department of Computer Science, Stony Brook University.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:142-151. eCollection 2020.

Abstract

Drug-drug interactions (DDI) can cause severe adverse drug reactions and pose a major challenge to medication therapy. Recently, informatics-based approaches are emerging for DDI studies. In this paper, we aim to identify key pharmacological components in DDI based on large-scale data from DrugBank, a comprehensive DDI database. With pharmacological components as features, logistic regression is used to perform DDI classification with a focus on searching for most predictive features, a process of identifying key pharmacological components. Using univariate feature selection with chi-squared statistic as the ranking criteria, our study reveals that top 10% features can achieve comparable classification performance compared to that using all features. The top 10% features are identified to be key pharmacological components. Furthermore, their importance is quantified by feature coefficients in the classifier, which measures the DDI potential and provides a novel perspective to evaluate pharmacological components.

摘要

药物相互作用(DDI)可导致严重的药物不良反应,并对药物治疗构成重大挑战。最近,基于信息学的方法正在兴起用于DDI研究。在本文中,我们旨在基于来自DrugBank(一个全面的DDI数据库)的大规模数据,识别DDI中的关键药理学成分。以药理学成分为特征,使用逻辑回归进行DDI分类,重点是寻找最具预测性的特征,即识别关键药理学成分的过程。使用以卡方统计量作为排名标准的单变量特征选择,我们的研究表明,前10%的特征与使用所有特征相比可实现相当的分类性能。前10%的特征被确定为关键药理学成分。此外,它们的重要性通过分类器中的特征系数进行量化,该系数衡量DDI潜力,并为评估药理学成分提供了一个新的视角。

相似文献

6
Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning.基于集成相似度和半监督学习的药物-药物相互作用预测。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):168-179. doi: 10.1109/TCBB.2020.2988018. Epub 2022 Feb 3.

引用本文的文献

本文引用的文献

4
Deep learning improves prediction of drug-drug and drug-food interactions.深度学习提高药物-药物和药物-食物相互作用的预测能力。
Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4304-E4311. doi: 10.1073/pnas.1803294115. Epub 2018 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验