Deng Jianyuan, Yang Zhibo, Wang Hehe, Ojima Iwao, Samaras Dimitris, Wang Fusheng
Stony Brook University, Department of Biomedical Informatics, Stony Brook, NY, 11794, USA.
Stony Brook University, Department of Computer Science, Stony Brook, NY, 11794, USA.
Nat Commun. 2023 Oct 13;14(1):6395. doi: 10.1038/s41467-023-41948-6.
Artificial intelligence (AI) has been widely applied in drug discovery with a major task as molecular property prediction. Despite booming techniques in molecular representation learning, key elements underlying molecular property prediction remain largely unexplored, which impedes further advancements in this field. Herein, we conduct an extensive evaluation of representative models using various representations on the MoleculeNet datasets, a suite of opioids-related datasets and two additional activity datasets from the literature. To investigate the predictive power in low-data and high-data space, a series of descriptors datasets of varying sizes are also assembled to evaluate the models. In total, we have trained 62,820 models, including 50,220 models on fixed representations, 4200 models on SMILES sequences and 8400 models on molecular graphs. Based on extensive experimentation and rigorous comparison, we show that representation learning models exhibit limited performance in molecular property prediction in most datasets. Besides, multiple key elements underlying molecular property prediction can affect the evaluation results. Furthermore, we show that activity cliffs can significantly impact model prediction. Finally, we explore into potential causes why representation learning models can fail and show that dataset size is essential for representation learning models to excel.
人工智能(AI)已广泛应用于药物发现领域,其主要任务是进行分子性质预测。尽管分子表示学习技术蓬勃发展,但分子性质预测背后的关键因素在很大程度上仍未得到探索,这阻碍了该领域的进一步发展。在此,我们使用多种表示方法对MoleculeNet数据集、一组阿片类药物相关数据集以及文献中的另外两个活性数据集上的代表性模型进行了广泛评估。为了研究低数据和高数据空间中的预测能力,还组装了一系列不同大小的描述符数据集来评估模型。我们总共训练了62820个模型,其中包括50220个基于固定表示的模型、4200个基于SMILES序列的模型和8400个基于分子图的模型。基于广泛的实验和严格的比较,我们表明表示学习模型在大多数数据集中的分子性质预测方面表现有限。此外,分子性质预测背后的多个关键因素会影响评估结果。此外,我们表明活性悬崖会显著影响模型预测。最后,我们探究了表示学习模型可能失败的潜在原因,并表明数据集大小对于表示学习模型的出色表现至关重要。