Suppr超能文献

一种用于恢复因运动而退化的静息态功能磁共振数据的序列配准框架。

A Series Registration Framework to Recover Resting-State Functional Magnetic Resonance Data Degraded By Motion.

作者信息

Schabdach Jenna M, Ceschin Rafael, Lee Vince K, Schmithorst Vincent, Panigrahy Ashok

机构信息

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania.

Department of Pediatric Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:569-578. eCollection 2020.

Abstract

Data retention is a significant problem in the medical imaging domain. For example, resting-state functional magnetic resonance images (rs-fMRIs) are invaluable for studying neurodevelopment but are highly susceptible to corruption due to patient motion. The effects of patient motion can be reduced through post-acquisition techniques such as volume registration. Traditional volume registration minimizes the global differences between all volumes in the rs-fMRI sequence and a designated reference volume. We suggest using the spatiotemporal relationships between subsequent image volumes to inform the registration: they are used initialize each volume registration to reduce local differences between volumes while minimizing global differences. We apply both the traditional and novel registration methods to a set of healthy human neonatal rs-fMRIs with significant motion artifacts (N=17). Both methods impacted the mean and standard deviation of the image sequences' correlation ratio matrices similarly; however, the novel framework was more effective in meeting gold standard motion thresholds.

摘要

数据存储是医学成像领域中的一个重大问题。例如,静息态功能磁共振成像(rs-fMRI)对于研究神经发育非常宝贵,但由于患者运动,它极易受到损坏。患者运动的影响可以通过诸如体积配准等采集后技术来降低。传统的体积配准可使rs-fMRI序列中所有体积与指定参考体积之间的全局差异最小化。我们建议利用后续图像体积之间的时空关系来指导配准:它们用于初始化每个体积配准,以减少体积之间的局部差异,同时最小化全局差异。我们将传统和新颖的配准方法应用于一组具有明显运动伪影的健康人类新生儿rs-fMRI(N = 17)。两种方法对图像序列相关率矩阵的均值和标准差的影响类似;然而,新颖的框架在达到金标准运动阈值方面更有效。

相似文献

7
Head Motion and Correction Methods in Resting-state Functional MRI.静息态功能磁共振成像中的头部运动及校正方法
Magn Reson Med Sci. 2016;15(2):178-86. doi: 10.2463/mrms.rev.2015-0060. Epub 2015 Dec 22.
8
SLIMM: Slice localization integrated MRI monitoring.SLIMM:切片定位集成 MRI 监测。
Neuroimage. 2020 Dec;223:117280. doi: 10.1016/j.neuroimage.2020.117280. Epub 2020 Aug 24.
10
Resting State fMRI: Going Through the Motions.静息态功能磁共振成像:走过场。
Front Neurosci. 2019 Aug 13;13:825. doi: 10.3389/fnins.2019.00825. eCollection 2019.

本文引用的文献

3
Temporal Registration in In-Utero Volumetric MRI Time Series.宫内容积磁共振成像时间序列中的时间配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:54-62. doi: 10.1007/978-3-319-46726-9_7. Epub 2016 Oct 2.
4
Prospective motion correction in functional MRI.功能磁共振成像中的前瞻性运动校正。
Neuroimage. 2017 Jul 1;154:33-42. doi: 10.1016/j.neuroimage.2016.11.014. Epub 2016 Nov 11.
5
An improved model of motion-related signal changes in fMRI.功能磁共振成像中与运动相关信号变化的一种改进模型。
Neuroimage. 2017 Jan 1;144(Pt A):74-82. doi: 10.1016/j.neuroimage.2016.08.051. Epub 2016 Aug 25.
10
The Insight ToolKit image registration framework.Insight ToolKit 图像配准框架。
Front Neuroinform. 2014 Apr 28;8:44. doi: 10.3389/fninf.2014.00044. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验