Suppr超能文献

多融合网络:基于深度神经网络的房颤检测

MultiFusionNet: Atrial Fibrillation Detection With Deep Neural Networks.

作者信息

Tran Luan, Li Yanfang, Nocera Luciano, Shahabi Cyrus, Xiong Li

机构信息

University of Southern California, Los Angeles, CA, USA.

Emory University, Atlanta, GA, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:654-663. eCollection 2020.

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia as well as a significant risk factor in heart failure and coronary artery disease. AF can be detected by using a short ECG recording. However, discriminating atrial fibrillation from normal sinus rhythm, other arrhythmia and strong noise, given a short ECG recording, is challenging. Towards this end, we propose MultiFusionNet, a deep learning network that uses a multiplicative fusion method to combine two deep neural networks trained on different sources of knowledge, i.e., extracted features and raw data. Thus, MultiFusionNet can exploit the relevant extracted features to improve upon the utilization of the deep learning model on the raw data. Our experiments show that this approach offers the most accurate AF classification and outperforms recently published algorithms that either use extracted features or raw data separately. Finally, we show that our multiplicative fusion method for combining the two sub-networks outperforms several other combining methods.

摘要

心房颤动(AF)是最常见的心律失常,也是心力衰竭和冠状动脉疾病的重要危险因素。使用短程心电图记录可以检测到房颤。然而,给定一段短程心电图记录,要将房颤与正常窦性心律、其他心律失常以及强噪声区分开来具有挑战性。为此,我们提出了MultiFusionNet,这是一种深度学习网络,它使用乘法融合方法来组合两个基于不同知识源(即提取的特征和原始数据)训练的深度神经网络。因此,MultiFusionNet可以利用相关的提取特征来提高深度学习模型对原始数据的利用率。我们的实验表明,这种方法提供了最准确的房颤分类,并且优于最近发表的分别使用提取特征或原始数据的算法。最后,我们表明用于组合两个子网络的乘法融合方法优于其他几种组合方法。

相似文献

1
MultiFusionNet: Atrial Fibrillation Detection With Deep Neural Networks.
AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:654-663. eCollection 2020.
4
Beatwise ECG Classification for the Detection of Atrial Fibrillation with Deep Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341199.
5
Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
Comput Biol Med. 2021 Dec;139:104880. doi: 10.1016/j.compbiomed.2021.104880. Epub 2021 Oct 18.
7
Exploiting exercise electrocardiography to improve early diagnosis of atrial fibrillation with deep learning neural networks.
Comput Biol Med. 2022 Jul;146:105584. doi: 10.1016/j.compbiomed.2022.105584. Epub 2022 May 5.
8
Detecting atrial fibrillation by deep convolutional neural networks.
Comput Biol Med. 2018 Feb 1;93:84-92. doi: 10.1016/j.compbiomed.2017.12.007. Epub 2017 Dec 15.
10
Detection of Brief Episodes of Atrial Fibrillation Based on Electrocardiomatrix and Convolutional Neural Network.
Front Physiol. 2021 Aug 25;12:673819. doi: 10.3389/fphys.2021.673819. eCollection 2021.

引用本文的文献

1
Atrial Fibrillation and Atrial Flutter Detection Using Deep Learning.
Sensors (Basel). 2025 Jul 1;25(13):4109. doi: 10.3390/s25134109.
3
State-of-the-Art Deep Learning Methods on Electrocardiogram Data: Systematic Review.
JMIR Med Inform. 2022 Aug 15;10(8):e38454. doi: 10.2196/38454.
4
Monitoring Pulse Rate in the Background Using Front Facing Cameras of Mobile Devices.
IEEE J Biomed Health Inform. 2023 May;27(5):2208-2218. doi: 10.1109/JBHI.2022.3197076. Epub 2023 May 4.
5
Review of Deep Learning-Based Atrial Fibrillation Detection Studies.
Int J Environ Res Public Health. 2021 Oct 28;18(21):11302. doi: 10.3390/ijerph182111302.

本文引用的文献

2
AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017.
Comput Cardiol (2010). 2017 Sep;44. doi: 10.22489/CinC.2017.065-469. Epub 2018 Apr 5.
3
Physiologically motivated detection of Atrial Fibrillation.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1278-1281. doi: 10.1109/EMBC.2017.8037065.
4
Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation.
Comput Methods Programs Biomed. 2016 Jul;131:157-68. doi: 10.1016/j.cmpb.2016.04.009. Epub 2016 Apr 12.
5
Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy.
Physiol Meas. 2015 Sep;36(9):1873-88. doi: 10.1088/0967-3334/36/9/1873. Epub 2015 Aug 6.
6
P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors.
Heart Rhythm. 2014 Sep;11(9):1575-83. doi: 10.1016/j.hrthm.2014.06.006. Epub 2014 Jun 6.
8
Dynamic analysis of cardiac rhythms for discriminating atrial fibrillation from lethal ventricular arrhythmias.
Circ Arrhythm Electrophysiol. 2013 Jun;6(3):555-61. doi: 10.1161/CIRCEP.113.000034. Epub 2013 May 16.
9
A novel method for detection of the transition between atrial fibrillation and sinus rhythm.
IEEE Trans Biomed Eng. 2011 Apr;58(4):1113-9. doi: 10.1109/TBME.2010.2096506. Epub 2010 Dec 3.
10
Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H319-25. doi: 10.1152/ajpheart.00561.2010. Epub 2010 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验