Suppr超能文献

一种用于预测严重精神疾病死亡率的类对比人类可解释机器学习方法。

A class-contrastive human-interpretable machine learning approach to predict mortality in severe mental illness.

作者信息

Banerjee Soumya, Lio Pietro, Jones Peter B, Cardinal Rudolf N

机构信息

Department of Psychiatry, University of Cambridge, Cambridge, UK.

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.

出版信息

NPJ Schizophr. 2021 Dec 8;7(1):60. doi: 10.1038/s41537-021-00191-y.

Abstract

Machine learning (ML), one aspect of artificial intelligence (AI), involves computer algorithms that train themselves. They have been widely applied in the healthcare domain. However, many trained ML algorithms operate as 'black boxes', producing a prediction from input data without a clear explanation of their workings. Non-transparent predictions are of limited utility in many clinical domains, where decisions must be justifiable. Here, we apply class-contrastive counterfactual reasoning to ML to demonstrate how specific changes in inputs lead to different predictions of mortality in people with severe mental illness (SMI), a major public health challenge. We produce predictions accompanied by visual and textual explanations as to how the prediction would have differed given specific changes to the input. We apply it to routinely collected data from a mental health secondary care provider in patients with schizophrenia. Using a data structuring framework informed by clinical knowledge, we captured information on physical health, mental health, and social predisposing factors. We then trained an ML algorithm and other statistical learning techniques to predict the risk of death. The ML algorithm predicted mortality with an area under receiver operating characteristic curve (AUROC) of 0.80 (95% confidence intervals [0.78, 0.82]). We used class-contrastive analysis to produce explanations for the model predictions. We outline the scenarios in which class-contrastive analysis is likely to be successful in producing explanations for model predictions. Our aim is not to advocate for a particular model but show an application of the class-contrastive analysis technique to electronic healthcare record data for a disease of public health significance. In patients with schizophrenia, our work suggests that use or prescription of medications like antidepressants was associated with lower risk of death. Abuse of alcohol/drugs and a diagnosis of delirium were associated with higher risk of death. Our ML models highlight the role of co-morbidities in determining mortality in patients with schizophrenia and the need to manage co-morbidities in these patients. We hope that some of these bio-social factors can be targeted therapeutically by either patient-level or service-level interventions. Our approach combines clinical knowledge, health data, and statistical learning, to make predictions interpretable to clinicians using class-contrastive reasoning. This is a step towards interpretable AI in the management of patients with schizophrenia and potentially other diseases.

摘要

机器学习(ML)作为人工智能(AI)的一个方面,涉及能自我训练的计算机算法。它们已在医疗保健领域得到广泛应用。然而,许多经过训练的ML算法就像“黑匣子”一样运作,根据输入数据得出预测结果,却没有对其工作原理给出清晰解释。在许多临床领域,决策必须合理有据,非透明的预测效用有限。在此,我们将类别对比反事实推理应用于ML,以展示输入的特定变化如何导致对严重精神疾病(SMI)患者死亡率的不同预测,严重精神疾病是一项重大的公共卫生挑战。我们给出预测结果,并附带视觉和文字解释,说明在输入发生特定变化时预测会有怎样的不同。我们将其应用于从一家心理健康二级护理机构常规收集的精神分裂症患者数据。利用基于临床知识的数据构建框架,我们获取了有关身体健康、心理健康和社会诱发因素的信息。然后,我们训练了一个ML算法和其他统计学习技术来预测死亡风险。该ML算法预测死亡率的受试者工作特征曲线下面积(AUROC)为0.80(95%置信区间[0.78, 0.82])。我们使用类别对比分析为模型预测生成解释。我们概述了类别对比分析可能成功为模型预测生成解释的情形。我们的目的不是倡导某个特定模型,而是展示类别对比分析技术在具有公共卫生意义的疾病的电子医疗记录数据中的应用。在精神分裂症患者中,我们的研究表明,使用或开具抗抑郁药等药物与较低的死亡风险相关。酗酒/滥用药物和谵妄诊断与较高的死亡风险相关。我们的ML模型突出了合并症在确定精神分裂症患者死亡率中的作用,以及管理这些患者合并症的必要性。我们希望其中一些生物社会因素可以通过患者层面或服务层面的干预进行治疗靶向。我们的方法结合了临床知识、健康数据和统计学习,通过类别对比推理使预测结果对临床医生来说具有可解释性。这是朝着在精神分裂症及可能其他疾病患者管理中实现可解释人工智能迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/683d/8654849/ee55f1daac4d/41537_2021_191_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验