Suppr超能文献

基于超极化 NMR 数据的稳定同位素分辨代谢组学分类前列腺癌细胞。

Stable isotope resolved metabolomics classification of prostate cancer cells using hyperpolarized NMR data.

机构信息

Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800 Kongens Lyngby, Denmark.

Center for Hyperpolarization in Magnetic Resonance, Department of Health Technology, Ørsteds plads 349, 2800 Kongens Lyngby, Denmark.

出版信息

J Magn Reson. 2020 Jul;316:106750. doi: 10.1016/j.jmr.2020.106750. Epub 2020 May 20.

Abstract

Metabolic fingerprinting is a strong tool for characterization of biological phenotypes. Classification with machine learning is a critical component in the discrimination of molecular determinants. Cellular activity can be traced using stable isotope labelling of metabolites from which information on cellular pathways may be obtained. Nuclear magnetic resonance (NMR) spectroscopy is, due to its ability to trace labelling in specific atom positions, a method of choice for such metabolic activity measurements. In this study, we used hyperpolarization in the form of dissolution Dynamic Nuclear Polarization (dDNP) NMR to measure signal enhanced isotope labelled metabolites reporting on pathway activity from four different prostate cancer cell lines. The spectra have a high signal-to-noise, with less than 30 signals reporting on 10 metabolic reactions. This allows easy extraction and straightforward interpretation of spectral data. Four metabolite signals selected using a Random Forest algorithm allowed a classification with Support Vector Machines between aggressive and indolent cancer cells with 96.9% accuracy, -corresponding to 31 out of 32 samples. This demonstrates that the information contained in the few features measured with dDNP NMR, is sufficient and robust for performing binary classification based on the metabolic activity of cultured prostate cancer cells.

摘要

代谢指纹图谱是生物表型特征描述的有力工具。机器学习分类是区分分子决定因素的关键组成部分。可以使用稳定同位素标记的代谢物来追踪细胞活性,从而获得有关细胞途径的信息。由于其能够追踪特定原子位置的标记,因此核磁共振(NMR)光谱是此类代谢活性测量的首选方法。在这项研究中,我们使用溶解动态核极化(dDNP)NMR 的超极化形式来测量来自四种不同前列腺癌细胞系的报告途径活性的信号增强同位素标记代谢物。这些光谱具有高信噪比,不到 30 个信号可报告 10 种代谢反应。这允许轻松提取和直接解释光谱数据。使用随机森林算法选择的四个代谢物信号允许使用支持向量机对侵袭性和惰性癌细胞进行分类,准确率为 96.9%,-对应于 31 个样本中的 32 个。这表明,dDNP NMR 测量的少数特征中包含的信息足以根据培养的前列腺癌细胞的代谢活性进行二进制分类,并且稳健。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验