Dey Arnab, Charrier Benoît, Lemaitre Karine, Ribay Victor, Eshchenko Dmitry, Schnell Marc, Melzi Roberto, Stern Quentin, Cousin Samuel F, Kempf James G, Jannin Sami, Dumez Jean-Nicolas, Giraudeau Patrick
Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France.
Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland.
Magn Reson (Gott). 2022 Sep 29;3(2):183-202. doi: 10.5194/mr-3-183-2022. eCollection 2022.
NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D H experiments for maximizing sensitivity. However, strong peak overlap of H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.
基于核磁共振(NMR)的代谢物混合物分析可为生物系统提供关键信息,但大多依赖一维氢实验来最大化灵敏度。然而,氢谱中强烈的峰重叠常常限制了对本质上复杂的生物混合物的分析。溶解动态核极化(d-DNP)可将NMR灵敏度提高几个数量级,从而能够对天然丰度下的代谢物进行基于碳核磁共振(C NMR)的分析。我们最近已证明成功将d-DNP引入应用于植物代谢研究的完整非靶向代谢组学工作流程。在此,我们描述了在天然碳丰度下进行实验时d-DNP实验设置的系统优化,并展示了由此带来的分辨率、灵敏度以及最终可检测信号数量的提高。我们系统地优化了所涉及的参数(在一个半自动原型d-DNP系统中,从样品制备到信号检测,旨在为这类系统的潜在用户提供一份优化指南,这些用户可能并非仪器开发方面的专家)。与先前报道的d-DNP增强非靶向代谢组学研究相比,该优化程序能够检测天然丰度下代谢物先前无法获取的质子化碳信号,其线形至少提高4倍且具有高重复性。这扩展了天然丰度下超极化碳核磁共振的应用范围,并为代谢组学研究中更广泛地使用DNP超极化核磁共振铺平了道路。