Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117, United States.
ACS Nano. 2021 Jan 26;15(1):1850-1857. doi: 10.1021/acsnano.0c10159. Epub 2021 Jan 7.
High-speed atomic force microscopy (AFM) enabled the imaging of protein interactions with millisecond time resolutions (10 fps). However, the acquisition of nanomechanical maps of proteins is about 100 times slower. Here, we developed a high-speed bimodal AFM that provided high-spatial resolution maps of the elastic modulus, the loss tangent, and the topography at imaging rates of 5 fps. The microscope was applied to identify the initial stages of the self-assembly of the collagen structures. By following the changes in the physical properties, we identified four stages, nucleation and growth of collagen precursors, formation of tropocollagen molecules, assembly of tropocollagens into microfibrils, and alignment of microfibrils to generate microribbons. Some emerging collagen structures never matured, and after an existence of several seconds, they disappeared into the solution. The elastic modulus of a microfibril (∼4 MPa) implied very small stiffness (∼3 × 10 N/m). Those values amplified the amplitude of the collagen thermal fluctuations on the mica plane, which facilitated microribbon build-up.
高速原子力显微镜(AFM)能够以毫秒级的时间分辨率(10 fps)成像蛋白质相互作用。然而,获取蛋白质的纳米力学图谱要慢 100 倍左右。在这里,我们开发了一种高速双模 AFM,可在 5 fps 的成像速度下提供弹性模量、损耗角正切和形貌的高空间分辨率图谱。该显微镜用于识别胶原蛋白结构自组装的初始阶段。通过跟踪物理性质的变化,我们确定了四个阶段,即胶原蛋白前体的成核和生长、原胶原蛋白分子的形成、原胶原蛋白组装成微纤维以及微纤维的排列以生成微丝。一些新出现的胶原蛋白结构从未成熟,存在几秒钟后,它们就消失在溶液中。微纤维的弹性模量(约 4 MPa)意味着非常小的刚度(约 3×10 N/m)。这些值放大了胶原蛋白在云母平面上的热波动幅度,从而促进了微丝的形成。