Suppr超能文献

使用电特性不同的水凝胶珠对生物分子进行快速、多重检测。

Rapid, multiplexed detection of biomolecules using electrically distinct hydrogel beads.

作者信息

Cowell Thomas W, Valera Enrique, Jankelow Aaron, Park Joonhyuck, Schrader Alex W, Ding Ruihua, Berger Jacob, Bashir Rashid, Han Hee-Sun

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Ave., Urbana, Illinois 61801, USA.

出版信息

Lab Chip. 2020 Jun 30;20(13):2274-2283. doi: 10.1039/d0lc00243g.

Abstract

Rapid, low-cost, and multiplexed biomolecule detection is an important goal in the development of effective molecular diagnostics. Our recent work has demonstrated a microfluidic biochip device that can electrically quantitate a protein target with high sensitivity. This platform detects and quantifies a target analyte by counting and capturing micron-sized beads in response to an immunoassay on the bead surface. Existing microparticles limit the technique to the detection of a single protein target and lack the magnetic properties required for separation of the microparticles for direct measurements from whole blood. Here, we report new precisely engineered microparticles that achieve electrical multiplexing and adapt this platform for low-cost and label-free multiplexed electrical detection of biomolecules. Droplet microfluidic synthesis yielded highly-monodisperse populations of magnetic hydrogel beads (MHBs) with the necessary properties for multiplexing the electrical Coulter counting on chip. Each bead population was designed to contain a different amount of the hydrogel material, resulting in a unique electrical impedance signature during Coulter counting, thereby enabling unique identification of each bead. These monodisperse bead populations span a narrow range of sizes ensuring that all can be captured sensitively and selectively under simultaneously flow. Incorporating these newly synthesized beads, we demonstrate versatile and multiplexed biomolecule detection of proteins or DNA targets. This development of multiplexed beads for the electrical detection of biomolecules, provides a critical advancement towards multiplexing the Coulter counting approach and the development of a low cost point-of-care diagnostic sensor.

摘要

快速、低成本且能进行多重生物分子检测是有效分子诊断技术发展的一个重要目标。我们最近的工作展示了一种微流控生物芯片装置,它能够以高灵敏度对蛋白质靶标进行电学定量分析。该平台通过对微珠表面免疫分析产生的微米级微珠进行计数和捕获,来检测和定量目标分析物。现有的微粒将该技术限制于单一蛋白质靶标的检测,并且缺乏从全血中直接测量时进行微粒分离所需的磁性。在此,我们报道了新的经过精确设计的微粒,其实现了电学多重分析,并使该平台适用于生物分子的低成本、无标记多重电学检测。微滴微流控合成产生了高度单分散的磁性水凝胶珠(MHBs)群体,这些微珠具有在芯片上进行电学库尔特计数多重分析所需的特性。每个微珠群体被设计为包含不同量的水凝胶材料,从而在库尔特计数期间产生独特的电阻抗特征,进而能够对每个微珠进行独特识别。这些单分散的微珠群体尺寸范围狭窄,确保了在同时流动的情况下所有微珠都能被灵敏且选择性地捕获。通过纳入这些新合成的微珠,我们展示了对蛋白质或DNA靶标的通用且多重的生物分子检测。用于生物分子电学检测的多重微珠的这一进展,为库尔特计数方法的多重分析以及低成本即时诊断传感器的开发提供了关键的进步。

相似文献

8
Particle ID: A Multiplexed Hydrogel Bead Platform for Biomedical Applications.粒子 ID:用于生物医学应用的多重水凝胶珠平台。
ACS Appl Mater Interfaces. 2023 Dec 6;15(48):55346-55357. doi: 10.1021/acsami.3c12122. Epub 2023 Nov 20.

引用本文的文献

2
Biomaterials for Cell Manufacturing.细胞制造用生物材料。
ACS Macro Lett. 2024 Nov 19;13(11):1521-1530. doi: 10.1021/acsmacrolett.4c00634. Epub 2024 Oct 28.
4
Electrochemical point-of-care devices for the diagnosis of sepsis.用于败血症诊断的电化学即时检测设备。
Curr Opin Electrochem. 2023 Jun;39. doi: 10.1016/j.coelec.2023.101300. Epub 2023 Apr 14.
9
Application of Microfluidics in Immunoassay: Recent Advancements.微流控技术在免疫分析中的应用:最新进展。
J Healthc Eng. 2021 Jul 15;2021:2959843. doi: 10.1155/2021/2959843. eCollection 2021.

本文引用的文献

3
Effects of biomarker diagnostic accuracy on biomarker-guided phase 2 trials.生物标志物诊断准确性对生物标志物引导的2期试验的影响。
Contemp Clin Trials Commun. 2019 Jun 14;15:100396. doi: 10.1016/j.conctc.2019.100396. eCollection 2019 Sep.
5
Point-of-care sensors for the management of sepsis.即时检测传感器在脓毒症管理中的应用。
Nat Biomed Eng. 2018 Sep;2(9):640-648. doi: 10.1038/s41551-018-0288-9. Epub 2018 Sep 11.
9
Highly Sensitive and Multiplexed Protein Measurements.高灵敏度和多重蛋白质检测
Chem Rev. 2019 Jan 9;119(1):293-321. doi: 10.1021/acs.chemrev.8b00257. Epub 2018 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验