Anshori Isa, Lukito Vincent, Adhawiyah Rafita, Putri Delpita, Harimurti Suksmandhira, Rajab Tati Latifah Erawati, Pradana Arfat, Akbar Mohammad, Syamsunarno Mas Rizky Anggun Adipurna, Handayani Murni, Purwidyantri Agnes, Prabowo Briliant Adhi
Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia.
Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia.
Micromachines (Basel). 2022 Jul 28;13(8):1197. doi: 10.3390/mi13081197.
We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation. In addition, the optimization of post-processing was performed to investigate the reliability of the fabricated hollow structures, which are fundamental to creating a fluidic channel or chamber. We found out that by using an inexpensive 3D printer, the fabricated resolution can be pushed down to 850 µm and 550 µm size for squared- and circled-shapes, respectively, by the gradual hollow structure, applying vertical printing orientation. These strategies opened up the possibility of developing straightforward microfluidics platforms that could replace conventional microfluidics mold fabrication methods, such as photolithography and milling, which are costly and time consuming. Considerably cheap commercial resin and its tiny volume employed for a single printing procedure significantly cut down the estimated fabrication cost to less than 50 cents USD/module. The simulation study unravels the prominent properties of the fabricated devices for biological fluid mixers, such as PBS, urine and plasma blood. This study is eminently prospective toward microfluidics application in clinical biosensing, where disposable, low-cost, high-throughput, and reproducible chips are highly required.
我们提出了一种低成本且简单的方法,使用一台投资成本低于400美元的经济型立体光刻(SLA)三维(3D)打印机来制造一种新型的锁钥式混合器微流控装置。这项研究所提出的方法对于高产量制造模块而言很有前景,而传统的微流控制造方法,如光刻法和聚合物浇铸法,通常会限制产量。我们展示了针对连接器及其腔室模块的新型模块化锁钥式混合器,并对其参数进行了优化,如曝光条件和打印方向。此外,还进行了后处理优化,以研究制造出的空心结构的可靠性,这些空心结构是创建流体通道或腔室的基础。我们发现,通过使用价格低廉的3D打印机,采用垂直打印方向,通过逐步的空心结构,方形和圆形形状的制造分辨率分别可降至850微米和550微米。这些策略为开发直接的微流控平台开辟了可能性,该平台可以取代传统的微流控模具制造方法,如光刻法和铣削法,这些方法成本高且耗时。相当便宜的商用树脂及其在单次打印过程中使用的少量体积显著降低了估计的制造成本,至低于0.5美元/模块。模拟研究揭示了所制造的用于生物流体混合器(如PBS、尿液和血浆)的装置的显著特性。这项研究对于微流控技术在临床生物传感中的应用具有显著的前瞻性,在临床生物传感中,一次性、低成本、高产量和可重复的芯片是非常需要的。