Suppr超能文献

大数据方法在中国改善车辆排放清单中的应用。

A big data approach to improving the vehicle emission inventory in China.

机构信息

State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China.

出版信息

Nat Commun. 2020 Jun 3;11(1):2801. doi: 10.1038/s41467-020-16579-w.

Abstract

Estimating truck emissions accurately would benefit atmospheric research and public health protection. Here, we developed a full-sample enumeration approach TrackATruck to bridge low-frequency but full-size vehicles driving big data to high-resolution emission inventories. Based on 19 billion trajectories, we show how big the emission difference could be using different approaches: 99% variation coefficients on regional total (including 31% emissions from non-local trucks), and ± as large as 15 times on individual counties. Even if total amounts are set the same, the emissions on primary cargo routes were underestimated in the former by a multiple of 2-10 using aggregated approaches. Time allocation proxies are generated, indicating the importance of day-to-day estimation because the variation reached 26-fold. Low emission zone policy reduced emissions in the zone, but raised emissions in upwind areas in Beijing's case. Comprehensive measures should be considered, e.g. the demand-side optimization.

摘要

准确估算卡车排放将有益于大气研究和公众健康保护。在这里,我们开发了一种全样本枚举方法 TrackATruck,将低频但全尺寸车辆的大数据与高分辨率排放清单联系起来。基于 190 亿条轨迹,我们展示了不同方法的排放差异有多大:区域总量的变异系数为 99%(包括 31%的非本地卡车排放),个别县的变异系数高达±15 倍。即使总量相同,使用聚合方法,主要货物运输路线的排放量也会被低估 2-10 倍。生成了时间分配代理,表明了日常估算的重要性,因为变化幅度达到了 26 倍。在北京市的案例中,低排放区政策减少了排放区的排放量,但增加了上风区的排放量。应考虑采取综合措施,例如需求方优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9496/7271216/b8f057f86b56/41467_2020_16579_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验