Wang Hui, Li Xiyi, Ruan Qiushi, Tang Junwang
Solar Energy & Advanced Materials Research Group, Department of Chemical Engineering, UCL, Torrington Place, London, WC1E 7JE, UK.
Nanoscale. 2020 Jun 21;12(23):12329-12335. doi: 10.1039/d0nr02527e. Epub 2020 Jun 4.
Photocatalytic ammonia synthesis is a promising strategy for sustainable development compared to the energy-intensive industrial Haber-Bosch approach. Herein, a ternary heterostructure that consists of ruthenium species and carbon nitride (CN) was rationally explored for ammonia photosynthesis. Compared to the small ammonia yield from the g-CN and Ru/g-CN system, the Ru/RuO/g-CN system represents 6 times higher activity with excellent stability under full-spectrum irradiation. Such an enhancement is not only due to efficient transfer of electrons and holes to Ru and RuO, respectively, facilitating both the reduction and oxidation reaction, but also taking advantage of Ru for N[triple bond, length as m-dash]N activation.
与能源密集型的工业哈伯-博施法相比,光催化氨合成是一种可持续发展的有前景的策略。在此,合理探索了一种由钌物种和氮化碳(CN)组成的三元异质结构用于氨的光合作用。与g-CN和Ru/g-CN体系产生的少量氨产量相比,Ru/RuO/g-CN体系在全光谱照射下具有高6倍的活性和出色的稳定性。这种增强不仅归因于电子和空穴分别有效地转移到Ru和RuO,促进了还原反应和氧化反应,还利用了Ru对N≡N的活化作用。