Department of Internal Medicine, Mount Sinai Hospital, New York, NY, USA.
Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
J Cardiovasc Pharmacol Ther. 2020 Sep;25(5):379-390. doi: 10.1177/1074248420928651. Epub 2020 Jun 4.
Despite substantial advances in the study, treatment, and prevention of cardiovascular disease, numerous challenges relating to optimally screening, diagnosing, and managing patients remain. Simultaneous improvements in computing power, data storage, and data analytics have led to the development of new techniques to address these challenges. One powerful tool to this end is machine learning (ML), which aims to algorithmically identify and represent structure within data. Machine learning's ability to efficiently analyze large and highly complex data sets make it a desirable investigative approach in modern biomedical research. Despite this potential and enormous public and private sector investment, few prospective studies have demonstrated improved clinical outcomes from this technology. This is particularly true in cardiology, despite its emphasis on objective, data-driven results. This threatens to stifle ML's growth and use in mainstream medicine. We outline the current state of ML in cardiology and outline methods through which impactful and sustainable ML research can occur. Following these steps can ensure ML reaches its potential as a transformative technology in medicine.
尽管在心血管疾病的研究、治疗和预防方面取得了重大进展,但在优化患者的筛查、诊断和管理方面仍然存在许多挑战。同时,计算能力、数据存储和数据分析的进步也促使人们开发了新技术来应对这些挑战。其中一种强大的工具是机器学习 (ML),它旨在通过算法来识别和表示数据中的结构。机器学习能够高效地分析大型和高度复杂的数据集,这使其成为现代生物医学研究中一种理想的研究方法。尽管具有这种潜力以及公共和私营部门的大量投资,但很少有前瞻性研究表明这项技术能改善临床结果。这在心脏病学中尤其如此,尽管它强调客观、数据驱动的结果。这有可能阻碍机器学习在主流医学中的发展和应用。我们概述了目前机器学习在心脏病学中的应用,并概述了实现有影响力和可持续的机器学习研究的方法。遵循这些步骤可以确保机器学习能够发挥其作为医学领域变革性技术的潜力。