Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA.
Glia. 2020 Nov;68(11):2395-2414. doi: 10.1002/glia.23848. Epub 2020 Jun 4.
Focal ischemic stroke (FIS) is a leading cause of human death. Glial scar formation largely caused by reactive astrogliosis in peri-infarct region (PIR) is the hallmark of FIS. Glial cell-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line supernatant and is a potent survival neurotrophic factor. Here, using CreER -LoxP recombination technology, we generated inducible and astrocyte-specific GDNF conditional knockout (cKO), that is, GLAST-GDNF cKO mice to investigate the effect of reactive astrocytes (RAs)-derived GDNF on neuronal death, brain damage, oxidative stress and motor function recovery after photothrombosis (PT)-induced FIS. Under non-ischemic conditions, we found that adult GLAST-GDNF cKO mice exhibited significant lower numbers of Brdu+, Ki67+ cells, and DCX+ cells in the dentate gyrus (DG) in hippocampus than GDNF floxed (GDNF ) control (Ctrl) mice, indicating endogenous astrocytic GDNF can promote adult neurogenesis. Under ischemic conditions, GLAST-GDNF cKO mice had a significant increase in infarct volume, hippocampal damage and FJB+ degenerating neurons after PT as compared with the Ctrl mice. GLAST-GDNF cKO mice also had lower densities of Brdu+ and Ki67+ cells in the PIR and exhibited larger behavioral deficits than the Ctrl mice. Mechanistically, GDNF deficiency in astrocytes increased oxidative stress through the downregulation of glucose-6-phosphate dehydrogenase (G6PD) in RAs. In summary, our study indicates that RAs-derived endogenous GDNF plays important roles in reducing brain damage and promoting brain recovery after FIS through neural regeneration and suggests that promoting anti-oxidant mechanism in RAs is a potential strategy in stroke therapy.
局灶性缺血性脑卒中(FIS)是人类死亡的主要原因。在梗死周边区(PIR),反应性星形胶质细胞大量增生形成胶质瘢痕,这是 FIS 的主要特征。胶质细胞源性神经营养因子(GDNF)最初是从大鼠神经胶质瘤细胞系上清液中分离出来的,是一种有效的生存神经营养因子。在这里,我们使用 CreER-LoxP 重组技术,产生了诱导型和星形胶质细胞特异性 GDNF 条件性敲除(cKO),即 GLAST-GDNF cKO 小鼠,以研究反应性星形胶质细胞(RAs)来源的 GDNF 对光血栓诱导的 FIS 后神经元死亡、脑损伤、氧化应激和运动功能恢复的影响。在非缺血条件下,我们发现成年 GLAST-GDNF cKO 小鼠海马齿状回(DG)中的 Brdu+、Ki67+细胞和 DCX+细胞数量明显低于 GDNF floxed(GDNF)对照(Ctrl)小鼠,表明内源性星形胶质细胞 GDNF 可以促进成年神经发生。在缺血条件下,与 Ctrl 小鼠相比,GLAST-GDNF cKO 小鼠在 PT 后梗死体积、海马损伤和 FJB+变性神经元明显增加。GLAST-GDNF cKO 小鼠 PIR 中的 Brdu+和 Ki67+细胞密度也较低,行为缺陷大于 Ctrl 小鼠。机制上,星形胶质细胞中 GDNF 的缺失通过下调 RAs 中的葡萄糖-6-磷酸脱氢酶(G6PD)增加了氧化应激。综上所述,我们的研究表明,RAs 源性内源性 GDNF 通过神经再生在 FIS 后减少脑损伤和促进脑恢复中发挥重要作用,并表明在 RAs 中促进抗氧化机制是一种潜在的中风治疗策略。