Suppr超能文献

使用双模态深度卷积神经网络进行与年龄相关的黄斑变性和息肉样脉络膜血管病变的自动诊断。

Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks.

机构信息

Department of Ophthalmology, Peking Union Medical College Hospital, Dongcheng District, Beijing, China.

Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Br J Ophthalmol. 2021 Apr;105(4):561-566. doi: 10.1136/bjophthalmol-2020-315817. Epub 2020 Jun 4.

Abstract

AIMS

To investigate the efficacy of a bi-modality deep convolutional neural network (DCNN) framework to categorise age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) from colour fundus images and optical coherence tomography (OCT) images.

METHODS

A retrospective cross-sectional study was proposed of patients with AMD or PCV who came to Peking Union Medical College Hospital. Diagnoses of all patients were confirmed by two retinal experts based on diagnostic gold standard for AMD and PCV. Patients with concurrent retinal vascular diseases were excluded. Colour fundus images and spectral domain OCT images were taken from dilated eyes of patients and healthy controls, and anonymised. All images were pre-labelled into normal, dry or wet AMD or PCV. ResNet-50 models were used as the backbone and alternate machine learning models including random forest classifiers were constructed for further comparison. For human-machine comparison, the same testing data set was diagnosed by three retinal experts independently. All images from the same participant were presented only within a single partition subset.

RESULTS

On a test set of 143 fundus and OCT image pairs from 80 eyes (20 eyes per-group), the bi-modal DCNN demonstrated the best performance, with accuracy 87.4%, sensitivity 88.8% and specificity 95.6%, and a perfect agreement with diagnostic gold standard (Cohen's κ 0.828), exceeds slightly over the best expert (Human1, Cohen's κ 0.810). For recognising PCV, the model outperformed the best expert as well.

CONCLUSION

A bi-modal DCNN for automated classification of AMD and PCV is accurate and promising in the realm of public health.

摘要

目的

探究一种双模态深度卷积神经网络(DCNN)框架在对年龄相关性黄斑变性(AMD)和息肉状脉络膜血管病变(PCV)进行分类的有效性,该框架通过对眼底彩色图像和光学相干断层扫描(OCT)图像进行分类。

方法

本研究采用回顾性病例对照设计,纳入在北京协和医院就诊的 AMD 或 PCV 患者。所有患者的诊断均由两位视网膜专家根据 AMD 和 PCV 的诊断金标准进行确认。排除同时患有视网膜血管疾病的患者。对患者和健康对照者散瞳后的眼底彩色图像和频域 OCT 图像进行采集,并进行匿名处理。所有图像均预先标记为正常、干性 AMD 或湿性 AMD 或 PCV。使用 ResNet-50 模型作为骨干网络,并构建了包括随机森林分类器在内的替代机器学习模型进行进一步比较。为了进行人机比较,由三位视网膜专家独立对相同的测试数据集进行诊断。来自同一参与者的所有图像仅在单个分区子集中呈现。

结果

在 80 只眼的 143 对眼底和 OCT 图像测试集中(每组 20 只眼),双模态 DCNN 的表现最佳,准确率为 87.4%,敏感度为 88.8%,特异度为 95.6%,与诊断金标准具有完美的一致性(Cohen's κ 0.828),略高于最佳专家(Human1,Cohen's κ 0.810)。在识别 PCV 方面,该模型的表现也优于最佳专家。

结论

用于 AMD 和 PCV 自动分类的双模态 DCNN 在公共卫生领域具有准确性和广阔的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验