Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA.
Duke University School of Medicine, Durham, North Carolina, USA.
J Infect Dis. 2020 Nov 13;222(12):2012-2020. doi: 10.1093/infdis/jiaa316.
Advanced liver disease due to hepatitis C virus (HCV) is a leading cause of human immunodeficiency virus (HIV)-related morbidity and mortality. There remains a need to develop noninvasive predictors of clinical outcomes in persons with HIV/HCV coinfection.
We conducted a nested case-control study in 126 patients with HIV/HCV and utilized multiple quantitative metabolomic assays to identify a prognostic profile that predicts end-stage liver disease (ESLD) events including ascites, hepatic encephalopathy, hepatocellular carcinoma, esophageal variceal bleed, and spontaneous bacterial peritonitis. Each analyte class was included in predictive modeling, and area under the receiver operator characteristic curves (AUC) and accuracy were determined.
The baseline model including demographic and clinical data had an AUC of 0.79. Three models (baseline plus amino acids, lipid metabolites, or all combined metabolites) had very good accuracy (AUC, 0.84-0.89) in differentiating patients at risk of developing an ESLD complication up to 2 years in advance. The all combined metabolites model had sensitivity 0.70, specificity 0.85, positive likelihood ratio 4.78, and negative likelihood ratio 0.35.
We report that quantification of a novel set of metabolites may allow earlier identification of patients with HIV/HCV who have the greatest risk of developing ESLD clinical events.
丙型肝炎病毒 (HCV) 导致的晚期肝病是导致人类免疫缺陷病毒 (HIV) 相关发病率和死亡率的主要原因。仍然需要开发用于预测 HIV/HCV 合并感染人群临床结局的非侵入性预测因子。
我们对 126 名 HIV/HCV 患者进行了嵌套病例对照研究,并利用多种定量代谢组学检测方法确定了一种预后特征,该特征可预测终末期肝病 (ESLD) 事件,包括腹水、肝性脑病、肝细胞癌、食管静脉曲张出血和自发性细菌性腹膜炎。每个分析物类别均包含在预测模型中,并确定了接受者操作特征曲线 (ROC) 下的面积 (AUC) 和准确性。
包括人口统计学和临床数据的基线模型 AUC 为 0.79。三个模型(基线加氨基酸、脂质代谢物或所有组合代谢物)在区分有风险发展为 ESLD 并发症的患者方面具有非常好的准确性(AUC,0.84-0.89),可提前 2 年预测。所有组合代谢物模型的灵敏度为 0.70,特异性为 0.85,阳性似然比为 4.78,阴性似然比为 0.35。
我们报告称,定量测定一组新的代谢物可能有助于更早地识别出 HIV/HCV 患者中最有可能发生 ESLD 临床事件的患者。