Suppr超能文献

基于时空特征学习的卷积神经网络用于运动想象脑电信号解码

[Convolutional neural network based on temporal-spatial feature learning for motor imagery electroencephalogram signal decoding].

作者信息

Chu Yaqi, Zhu Bo, Zhao Xingang, Zhao Yiwen

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P.R.China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P.R.China;University of Chinese Academy of Sciences (UCAS), Beijing 100049, P.R.China.

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P.R.China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):1-9. doi: 10.7507/1001-5515.202007006.

Abstract

With the advantage of providing more natural and flexible control manner, brain-computer interface systems based on motor imagery electroencephalogram (EEG) have been widely used in the field of human-machine interaction. However, due to the lower signal-noise ratio and poor spatial resolution of EEG signals, the decoding accuracy is relative low. To solve this problem, a novel convolutional neural network based on temporal-spatial feature learning (TSCNN) was proposed for motor imagery EEG decoding. Firstly, for the EEG signals preprocessed by band-pass filtering, a temporal-wise convolution layer and a spatial-wise convolution layer were respectively designed, and temporal-spatial features of motor imagery EEG were constructed. Then, 2-layer two-dimensional convolutional structures were adopted to learn abstract features from the raw temporal-spatial features. Finally, the softmax layer combined with the fully connected layer were used to perform decoding task from the extracted abstract features. The experimental results of the proposed method on the open dataset showed that the average decoding accuracy was 80.09%, which is approximately 13.75% and 10.99% higher than that of the state-of-the-art common spatial pattern (CSP) + support vector machine (SVM) and filter bank CSP (FBCSP) + SVM recognition methods, respectively. This demonstrates that the proposed method can significantly improve the reliability of motor imagery EEG decoding.

摘要

基于运动想象脑电图(EEG)的脑机接口系统具有提供更自然、灵活控制方式的优势,已在人机交互领域得到广泛应用。然而,由于EEG信号的信噪比低和空间分辨率差,解码准确率相对较低。为了解决这个问题,提出了一种基于时空特征学习的新型卷积神经网络(TSCNN)用于运动想象EEG解码。首先,对于经过带通滤波预处理的EEG信号,分别设计了一个时间维度卷积层和一个空间维度卷积层,构建了运动想象EEG的时空特征。然后,采用2层二维卷积结构从原始时空特征中学习抽象特征。最后,使用softmax层结合全连接层从提取的抽象特征中执行解码任务。该方法在公开数据集上的实验结果表明,平均解码准确率为80.09%,分别比当前最先进的共同空间模式(CSP)+支持向量机(SVM)和滤波器组CSP(FBCSP)+SVM识别方法高出约13.75%和10.99%。这表明所提出的方法可以显著提高运动想象EEG解码的可靠性。

相似文献

3
Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces.基于运动想象的脑-机接口的深度时-空特征学习。
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2356-2366. doi: 10.1109/TNSRE.2020.3023417. Epub 2020 Nov 6.
8
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.基于注意力机制的 DSC-ConvLSTM 多类运动想象分类
Comput Intell Neurosci. 2022 May 5;2022:8187009. doi: 10.1155/2022/8187009. eCollection 2022.

引用本文的文献

本文引用的文献

2
Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks.利用卷积神经网络学习脑机接口的时间信息。
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5619-5629. doi: 10.1109/TNNLS.2018.2789927. Epub 2018 Mar 9.
9
Brain-computer interfaces for communication and rehabilitation.脑机接口用于通信和康复。
Nat Rev Neurol. 2016 Sep;12(9):513-25. doi: 10.1038/nrneurol.2016.113. Epub 2016 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验