Suppr超能文献

营养流行病学研究产出标准化本体:从基于纸张的标准到链接内容。

An Ontology to Standardize Research Output of Nutritional Epidemiology: From Paper-Based Standards to Linked Content.

机构信息

Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.

KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium.

出版信息

Nutrients. 2019 Jun 8;11(6):1300. doi: 10.3390/nu11061300.

Abstract

BACKGROUND

The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology.

METHODS

Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts.

RESULTS

Ontologies for "food and nutrition" ( = 37), "disease and specific population" ( = 100), "data description" ( = 21), "research description" ( = 35), and "supplementary (meta) data description" ( = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts.

CONCLUSION

ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology.

摘要

背景

在语义网中使用链接数据是为营养研究增值的一种很有前途的方法。本体论定义了明确定义的分类术语之间的逻辑关系,能够实现研究成果的链接和协调。为了能够描述营养流行病学领域的特定产出,我们根据营养流行病学的权威指南提出了营养流行病学本体论(ONE)。

方法

首先,进行了范围界定审查,以确定可在 ONE 中重复使用的现有本体论术语。其次,将现有的营养流行病学数据标准和报告指南转换为本体论。总结了标准中使用的术语,并分别列出了分类层次结构。第三,将营养流行病学标准、报告指南和核心概念的本体论收集在 ONE 中。纳入了三个案例研究来说明潜在的应用:(i)注释现有手稿和数据,(ii)基于本体论的推理,以及(iii)在 9 篇手稿的样本中估计报告的完整性。

结果

审查并列出了“食品和营养”(=37)、“疾病和特定人群”(=100)、“数据描述”(=21)、“研究描述”(=35)和“补充(元)数据描述”(=44)的本体论。ONE 由 339 个类组成:79 个新类用于描述数据,24 个新类用于描述手稿的内容。

结论

ONE 是一种用于自动进行数据集成、搜索和浏览的资源,可用于评估营养流行病学中的报告完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1aa/6628051/ee8ce6cdfeae/nutrients-11-01300-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验