Suppr超能文献

抽象语义领域中的颜色联想。

Color associations in abstract semantic domains.

机构信息

The Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA.

Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, USA; Department of Physics, Stanford University, USA.

出版信息

Cognition. 2020 Aug;201:104306. doi: 10.1016/j.cognition.2020.104306.

Abstract

The embodied cognition paradigm has stimulated ongoing debate about whether sensory data - including color - contributes to the semantic structure of abstract concepts. Recent uses of linguistic data in the study of embodied cognition have been focused on textual corpora, which largely precludes the direct analysis of sensory information. Here, we develop an automated approach to multimodal content analysis that detects associations between words based on the color distributions of their Google Image search results. Crucially, we measure color using a transformation of colorspace that closely resembles human color perception. We find that words in the abstract domains of academic disciplines, emotions, and music genres, cluster in a statistically significant fashion according to their color distributions. Furthermore, we use the lexical ontology WordNet and crowdsourced human judgments to show that this clustering reflects non-arbitrary semantic structure, consistent with metaphor-based accounts of embodied cognition. In particular, we find that images corresponding to more abstract words exhibit higher variability in colorspace, and semantically similar words have more similar color distributions. Strikingly, we show that color associations often reflect shared affective dimensions between abstract domains, thus revealing patterns of aesthetic coherence in everyday language. We argue that these findings provide a novel way to synthesize metaphor-based and affect-based accounts of embodied semantics.

摘要

具身认知范式引发了持续的争论,即感官数据(包括颜色)是否有助于抽象概念的语义结构。最近在具身认知研究中使用语言数据主要集中在文本语料库上,这在很大程度上排除了对感官信息的直接分析。在这里,我们开发了一种自动的多模态内容分析方法,该方法基于 Google 图像搜索结果的颜色分布来检测单词之间的关联。至关重要的是,我们使用一种类似于人类颜色感知的颜色空间变换来测量颜色。我们发现,学术领域、情感和音乐类型等抽象领域的单词根据其颜色分布以统计学上显著的方式聚类。此外,我们使用词汇本体 WordNet 和众包的人类判断来表明这种聚类反映了非任意的语义结构,与基于隐喻的具身认知理论一致。具体来说,我们发现更抽象的单词对应的图像在颜色空间中表现出更高的可变性,语义相似的单词具有更相似的颜色分布。引人注目的是,我们表明颜色关联通常反映了抽象领域之间共享的情感维度,从而揭示了日常语言中审美的连贯性模式。我们认为这些发现为综合基于隐喻和基于情感的具身语义解释提供了一种新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验