Suppr超能文献

用于量化计算机断层扫描中准直和螺距对图像质量影响的虚拟临床试验。

Virtual clinical trial for quantifying the effects of beam collimation and pitch on image quality in computed tomography.

作者信息

Abadi Ehsan, Segars William P, Harrawood Brian, Sharma Shobhit, Kapadia Anuj, Samei Ehsan

机构信息

Duke University School of Medicine, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Durham, North Carolina, United States.

Duke University School of Medicine, Medical Physics Graduate Program, Durham, North Carolina, United States.

出版信息

J Med Imaging (Bellingham). 2020 Jul;7(4):042806. doi: 10.1117/1.JMI.7.4.042806. Epub 2020 Jun 1.

Abstract

To utilize a virtual clinical trial (VCT) construct to investigate the effects of beam collimation and pitch on image quality (IQ) in computed tomography (CT) under different respiratory and cardiac motion rates. A computational human model [extended cardiac-torso (XCAT) phantom] with added lung lesions was used to simulate seven different rates of cardiac and respiratory motions. A validated CT simulator (DukeSim) was used in this study. A supplemental validation was done to ensure the accuracy of DukeSim across different pitches and beam collimations. Each XCAT phantom was imaged using the CT simulator at multiple pitches (0.5 to 1.5) and beam collimations (19.2 to 57.6 mm) at a constant dose level. The images were compared against the ground truth using three task-generic IQ metrics in the lungs. Additionally, the bias and variability in radiomics (morphological) feature measurements were quantified for task-specific lung lesion quantification across the studied imaging conditions. All task-generic metrics degraded by 1.6% to 13.3% with increasing pitch. When imaged with motion, increasing pitch reduced motion artifacts. The IQ slightly degraded (1.3%) with changes in the studied beam collimations. Patient motion exhibited negative effects (within 7%) on the IQ. Among all features across all imaging conditions studies, compactness2 and elongation showed the largest ( , 7.8%) and smallest ( , 2.7%) relative bias and variability. The radiomics results were robust across the motion profiles studied. While high pitch and large beam collimations can negatively affect the quality of CT images, they are desirable for fast imaging. Further, our results showed no major adverse effects in morphology quantification of lung lesions with the increase in pitch or beam collimation. VCTs, such as the one demonstrated in this study, represent a viable methodology for experiments in CT.

摘要

利用虚拟临床试验(VCT)构建体来研究在不同呼吸和心脏运动速率下,计算机断层扫描(CT)中束准直和螺距对图像质量(IQ)的影响。使用添加了肺部病变的计算人体模型[扩展心脏-躯干(XCAT)体模]来模拟七种不同的心脏和呼吸运动速率。本研究使用了经过验证的CT模拟器(DukeSim)。进行了补充验证以确保DukeSim在不同螺距和束准直情况下的准确性。每个XCAT体模在恒定剂量水平下,使用CT模拟器在多个螺距(0.5至1.5)和束准直(19.2至57.6毫米)下进行成像。使用肺部的三种通用任务IQ指标将图像与真实情况进行比较。此外,针对所研究的成像条件下特定任务的肺部病变量化,对放射组学(形态学)特征测量中的偏差和变异性进行了量化。随着螺距增加,所有通用任务指标下降了1.6%至13.3%。在有运动的情况下成像时,增加螺距可减少运动伪影。随着所研究的束准直变化,IQ略有下降(1.3%)。患者运动对IQ有负面影响(在7%以内)。在所有成像条件研究的所有特征中,紧凑度2和伸长率显示出最大最大特征最大( ,7.8%)和最小( ,2.7%)的相对偏差和变异性。放射组学结果在所研究的运动曲线中具有稳健性。虽然高螺距和大束准直会对CT图像质量产生负面影响,但它们有利于快速成像。此外,我们的结果表明,随着螺距或束准直的增加,在肺部病变形态学量化方面没有重大不利影响。像本研究中展示的虚拟临床试验是CT实验的一种可行方法。

相似文献

1
Virtual clinical trial for quantifying the effects of beam collimation and pitch on image quality in computed tomography.
J Med Imaging (Bellingham). 2020 Jul;7(4):042806. doi: 10.1117/1.JMI.7.4.042806. Epub 2020 Jun 1.
2
Task-based validation and application of a scanner-specific CT simulator using an anthropomorphic phantom.
Med Phys. 2022 Dec;49(12):7447-7457. doi: 10.1002/mp.15967. Epub 2022 Nov 12.
4
The impact of respiratory motion and CT pitch on the robustness of radiomics feature extraction in 4DCT lung imaging.
Comput Methods Programs Biomed. 2020 Dec;197:105719. doi: 10.1016/j.cmpb.2020.105719. Epub 2020 Aug 27.
6
Development and Clinical Applications of a Virtual Imaging Framework for Optimizing Photon-counting CT.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2612079. Epub 2022 Apr 4.
9
Scanner-specific validation of a CT simulator using a COPD-emulated anthropomorphic phantom.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12031. doi: 10.1117/12.2613212. Epub 2022 Apr 4.

引用本文的文献

本文引用的文献

1
Development of a scanner-specific simulation framework for photon-counting computed tomography.
Biomed Phys Eng Express. 2019 Aug;5(5). doi: 10.1088/2057-1976/ab37e9. Epub 2019 Aug 9.
2
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
3
4
COPDGene 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease.
Chronic Obstr Pulm Dis. 2019 Nov;6(5):384-399. doi: 10.15326/jcopdf.6.5.2019.0149.
5
Modeling "Textured" Bones in Virtual Human Phantoms.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):47-53. doi: 10.1109/TRPMS.2018.2828083. Epub 2018 Apr 19.
6
A real-time Monte Carlo tool for individualized dose estimations in clinical CT.
Phys Med Biol. 2019 Nov 4;64(21):215020. doi: 10.1088/1361-6560/ab467f.
7
DukeSim: A Realistic, Rapid, and Scanner-Specific Simulation Framework in Computed Tomography.
IEEE Trans Med Imaging. 2019 Jun;38(6):1457-1465. doi: 10.1109/TMI.2018.2886530. Epub 2018 Dec 12.
8
Lung tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer.
PLoS One. 2018 Oct 4;13(10):e0205003. doi: 10.1371/journal.pone.0205003. eCollection 2018.
9
Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins.
IEEE Trans Med Imaging. 2018 Mar;37(3):693-702. doi: 10.1109/TMI.2017.2769640.
10
Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond.
IEEE Trans Med Imaging. 2018 Mar;37(3):680-692. doi: 10.1109/TMI.2017.2738448. Epub 2017 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验