Suppr超能文献

利用自我追踪的移动健康数据描述月经周期中的生理和症状变化。

Characterizing physiological and symptomatic variation in menstrual cycles using self-tracked mobile-health data.

作者信息

Li Kathy, Urteaga Iñigo, Wiggins Chris H, Druet Anna, Shea Amanda, Vitzthum Virginia J, Elhadad Noémie

机构信息

Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 USA.

Data Science Institute, Columbia University, New York, NY 10027 USA.

出版信息

NPJ Digit Med. 2020 May 26;3:79. doi: 10.1038/s41746-020-0269-8. eCollection 2020.

Abstract

The menstrual cycle is a key indicator of overall health for women of reproductive age. Previously, menstruation was primarily studied through survey results; however, as menstrual tracking mobile apps become more widely adopted, they provide an increasingly large, content-rich source of menstrual health experiences and behaviors over time. By exploring a database of user-tracked observations from the Clue app by BioWink GmbH of over 378,000 users and 4.9 million natural cycles, we show that self-reported menstrual tracker data can reveal statistically significant relationships between per-person cycle length variability and self-reported qualitative symptoms. A concern for self-tracked data is that they reflect not only physiological behaviors, but also the engagement dynamics of app users. To mitigate such potential artifacts, we develop a procedure to exclude cycles lacking user engagement, thereby allowing us to better distinguish true menstrual patterns from tracking anomalies. We uncover that women located at different ends of the menstrual variability spectrum, based on the consistency of their cycle length statistics, exhibit statistically significant differences in their cycle characteristics and symptom tracking patterns. We also find that cycle and period length statistics are stationary over the app usage timeline across the variability spectrum. The symptoms that we identify as showing statistically significant association with timing data can be useful to clinicians and users for predicting cycle variability from symptoms, or as potential health indicators for conditions like endometriosis. Our findings showcase the potential of longitudinal, high-resolution self-tracked data to improve understanding of menstruation and women's health as a whole.

摘要

月经周期是育龄女性整体健康的关键指标。以前,月经主要通过调查结果进行研究;然而,随着月经追踪移动应用程序的使用越来越广泛,随着时间的推移,它们提供了越来越多、内容丰富的月经健康经历和行为来源。通过探索BioWink GmbH公司的Clue应用程序中超过37.8万名用户和490万个自然周期的用户追踪观察数据库,我们发现自我报告的月经追踪器数据可以揭示每人周期长度变异性与自我报告的定性症状之间具有统计学意义的关系。对自我追踪数据的一个担忧是,它们不仅反映生理行为,还反映应用程序用户的参与动态。为了减轻此类潜在的人为因素影响,我们开发了一种程序来排除缺乏用户参与的周期,从而使我们能够更好地将真正的月经模式与追踪异常区分开来。我们发现,根据周期长度统计的一致性,处于月经变异性谱两端的女性在周期特征和症状追踪模式上存在统计学显著差异。我们还发现,周期和经期长度统计在整个变异性谱的应用使用时间线上是稳定的。我们确定与时间数据显示出统计学显著关联的症状,可能对临床医生和用户预测症状引起的周期变异性有用,或者作为子宫内膜异位症等疾病的潜在健康指标。我们的研究结果展示了纵向、高分辨率自我追踪数据在增进对月经及女性整体健康理解方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e9d/7250828/e8adb17cab2a/41746_2020_269_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验