Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland.
Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; and Corresponding author. Email:
Funct Plant Biol. 2020 Sep;47(10):865-879. doi: 10.1071/FP19047.
Soil salinity is a major abiotic stress that limits plant growth and productivity. High concentrations of sodium chloride can cause osmotic and ionic effects. This stress minimises a plant's ability to uptake water and minerals, and increases Na+ accumulation in the cytosol, thereby disturbing metabolic processes. Prolonged plant exposure to salt stress can lead to oxidative stress and increased production of reactive oxygen species (ROS). Higher plants developed some strategies to cope with salt stress. Among these, mechanisms involving nitric oxide (NO) and polyamines (PAs) are particularly important. NO is a key signalling molecule that mediates a variety of physiological functions and defence responses against abiotic stresses in plants. Under salinity conditions, NO donors increase growth parameters, reduce Na+ toxicity, maintain ionic homeostasis, stimulate osmolyte accumulation and prevent damages caused by ROS. NO enhances salt tolerance of plants via post-translational protein modifications through S-nitrosylation of thiol groups, nitration of tyrosine residues and modulation of multiple gene expression. Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.
土壤盐度是限制植物生长和生产力的主要非生物胁迫因素。高浓度的氯化钠会导致渗透和离子效应。这种胁迫会降低植物吸收水分和矿物质的能力,并增加细胞质中的 Na+积累,从而扰乱代谢过程。植物长期暴露在盐胁迫下会导致氧化应激和活性氧(ROS)的产生增加。高等植物发展了一些应对盐胁迫的策略。其中,涉及一氧化氮(NO)和多胺(PAs)的机制尤为重要。NO 是一种关键的信号分子,介导植物对非生物胁迫的多种生理功能和防御反应。在盐胁迫条件下,NO 供体可以增加生长参数,减轻 Na+毒性,维持离子稳态,刺激渗透调节剂的积累,并防止 ROS 引起的损伤。NO 通过 S-亚硝基化巯基、酪氨酸残基硝化和调节多个基因表达来增强植物的耐盐性。已有多篇综述报道了多胺在调节盐胁迫植物响应和增强盐胁迫下多胺合成能力方面的作用,并且已知 NO 和 PAs 在盐度下相互作用。在这篇综述中,我们重点关注 NO 在植物对盐胁迫响应中的作用,特别关注 NO 和 PAs 之间的相互作用。