Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.
Nat Commun. 2020 Jun 11;11(1):2960. doi: 10.1038/s41467-020-16759-8.
Nucleic acid-based materials enable sub-nanometer precision in self-assembly for fields including biophysics, diagnostics, therapeutics, photonics, and nanofabrication. However, structural DNA nanotechnology has been limited to substantially hydrated media. Transfer to organic solvents commonly used in polymer and peptide synthesis results in the alteration of DNA helical structure or reduced thermal stabilities. Here we demonstrate that gamma-modified peptide nucleic acids (γPNA) can be used to enable formation of complex, self-assembling nanostructures in select polar aprotic organic solvent mixtures. However, unlike the diameter-monodisperse populations of nanofibers formed using analogous DNA approaches, γPNA structures appear to form bundles of nanofibers. A tight distribution of the nanofiber diameters could, however, be achieved in the presence of the surfactant SDS during self-assembly. We further demonstrate nanostructure morphology can be tuned by means of solvent solution and by strand substitution with DNA and unmodified PNA. This work thereby introduces a science of γPNA nanotechnology.
基于核酸的材料在自组装领域具有亚纳米级精度,包括生物物理学、诊断学、治疗学、光子学和纳米制造。然而,结构 DNA 纳米技术仅限于大量水合介质。转移到聚合物和肽合成中常用的有机溶剂中会导致 DNA 螺旋结构的改变或热稳定性降低。在这里,我们证明了γ-修饰的肽核酸 (γPNA) 可用于在选定的极性非质子有机溶剂混合物中形成复杂的自组装纳米结构。然而,与使用类似 DNA 方法形成的直径单分散的纳米纤维群体不同,γPNA 结构似乎形成纳米纤维束。然而,在自组装过程中存在表面活性剂 SDS 时,可以实现纳米纤维直径的紧密分布。我们进一步证明,通过溶剂溶液和通过与 DNA 和未修饰的 PNA 的链取代,可以调整纳米结构的形态。这项工作因此引入了γPNA 纳米技术科学。