Dąbrowski Maciej, Nakano Takafumi, Burn David M, Frisk Andreas, Newman David G, Klewe Christoph, Li Qian, Yang Mengmeng, Shafer Padraic, Arenholz Elke, Hesjedal Thorsten, van der Laan Gerrit, Qiu Zi Q, Hicken Robert J
Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL, United Kingdom.
Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.
Phys Rev Lett. 2020 May 29;124(21):217201. doi: 10.1103/PhysRevLett.124.217201.
Insulating antiferromagnets have recently emerged as efficient and robust conductors of spin current. Element-specific and phase-resolved x-ray ferromagnetic resonance has been used to probe the injection and transmission of ac spin current through thin epitaxial NiO(001) layers. The spin current is found to be mediated by coherent evanescent spin waves of GHz frequency, rather than propagating magnons of THz frequency, paving the way towards coherent control of the phase and amplitude of spin currents within an antiferromagnetic insulator at room temperature.
绝缘反铁磁体最近已成为高效且稳健的自旋电流导体。元素特异性和相分辨X射线铁磁共振已被用于探测交流自旋电流通过外延NiO(001)薄层的注入和传输。结果发现,自旋电流是由吉赫兹频率的相干倏逝自旋波介导的,而非太赫兹频率的传播磁振子,这为在室温下对反铁磁绝缘体中的自旋电流相位和幅度进行相干控制铺平了道路。