文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用诃子叶提取物的 AgNPs 的生物合成及其对有机染料催化降解的功效。

Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes.

机构信息

Laboratory of Plant Pathology, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.

Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.

出版信息

Sci Rep. 2020 Jun 15;10(1):9616. doi: 10.1038/s41598-020-66851-8.


DOI:10.1038/s41598-020-66851-8
PMID:32541840
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7295755/
Abstract

In the present work, we demonstrated the biosynthesis of silver nanoparticles (AgNPs) by highly stable, economic and eco-friendly method using leaf extract of Terminalia arjuna (T. arjuna) and employing as a catalyst for the degradation of methyl orange (MO), methylene blue (MB), congo red (CR) and 4- nitrophenol (4-NP). The biosynthesis of AgNPs was visually validated through the appearance of reddish-brown color and further confirmed by the UV-spectra at 418 nm. The TEM and FE-SEM studies revealed the spherical shape of particles with size ranged between 10-50 nm. Face centered cubic crystalline nature of AgNPs was proved by XRD analysis. The negative value of zeta potential (-21.7) indicated the stability of AgNPs and elemental composition was confirmed by EDS. FT-IR analysis revealed the functional groups present in the plant extract trigger the biosynthesis of AgNPs. The AgNPs exhibited strong degradation of MO (86.68%), MB (93.60%), CR (92.20%) and 4NP (88.80%) by completing the reduction reaction within 20 min. The reaction kinetics followed the pseudo-first-order and displayed k-values (rate constant) 0.166 min, 0.138 min, 0.182 min and 0.142 min for MO, MB, CR and 4-NP respectively. This study showed an efficient, feasible and reproducible method for the biosynthesis of eco-friendly, cheap and long-time stable AgNPs and their application as potent catalysts against the degradation of hazardous dyes.

摘要

在本工作中,我们展示了使用Terminalia arjuna(T. arjuna)叶提取物通过高度稳定、经济和环保的方法合成银纳米粒子(AgNPs),并将其用作降解甲基橙(MO)、亚甲基蓝(MB)、刚果红(CR)和 4-硝基苯酚(4-NP)的催化剂。AgNPs 的生物合成通过出现红棕色外观进行了直观验证,并通过在 418nm 处的 UV 光谱进一步确认。TEM 和 FE-SEM 研究表明,颗粒呈球形,尺寸在 10-50nm 之间。XRD 分析证明了 AgNPs 的面心立方晶态性质。负的zeta 电位(-21.7)表明了 AgNPs 的稳定性,EDS 证实了元素组成。FT-IR 分析表明,植物提取物中的官能团引发了 AgNPs 的生物合成。AgNPs 在 20min 内完成还原反应,对 MO(86.68%)、MB(93.60%)、CR(92.20%)和 4NP(88.80%)表现出强烈的降解作用。反应动力学遵循拟一级反应,并显示出 MO(k 值(速率常数)为 0.166 min)、MB(k 值为 0.138 min)、CR(k 值为 0.182 min)和 4-NP(k 值为 0.142 min)的 k 值。该研究展示了一种高效、可行且可重复的方法,用于生物合成环保、廉价且长时间稳定的 AgNPs,并将其作为潜在催化剂应用于危险染料的降解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/2d8ca183f322/41598_2020_66851_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/af52502b2865/41598_2020_66851_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/1d7776fc7ea6/41598_2020_66851_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/c96deed22551/41598_2020_66851_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/f89351e299ca/41598_2020_66851_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/693311bed37b/41598_2020_66851_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/88c6c1df55e9/41598_2020_66851_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/6aed777cd088/41598_2020_66851_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/7f9839d896ec/41598_2020_66851_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/a5b2c0b69306/41598_2020_66851_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/2d8ca183f322/41598_2020_66851_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/af52502b2865/41598_2020_66851_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/1d7776fc7ea6/41598_2020_66851_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/c96deed22551/41598_2020_66851_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/f89351e299ca/41598_2020_66851_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/693311bed37b/41598_2020_66851_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/88c6c1df55e9/41598_2020_66851_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/6aed777cd088/41598_2020_66851_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/7f9839d896ec/41598_2020_66851_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/a5b2c0b69306/41598_2020_66851_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9db8/7295755/2d8ca183f322/41598_2020_66851_Fig10_HTML.jpg

相似文献

[1]
Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes.

Sci Rep. 2020-6-15

[2]
Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles.

J Photochem Photobiol B. 2016-7-28

[3]
Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-2-5

[4]
Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes.

J Colloid Interface Sci. 2017-3-15

[5]
Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract.

Artif Cells Nanomed Biotechnol. 2017-9

[6]
Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye.

Spectrochim Acta A Mol Biomol Spectrosc. 2016-5-15

[7]
Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants.

Mater Sci Eng C Mater Biol Appl. 2020-6

[8]
Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nano-catalyst from Cicer arietinum leaves.

J Photochem Photobiol B. 2017-7-22

[9]
Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance.

J Photochem Photobiol B. 2018-3-26

[10]
Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential.

J Photochem Photobiol B. 2018-11-15

引用本文的文献

[1]
Eco-Friendly Synthesis of Silver Nanoparticles from Flower and Their Catalytic Applications.

Nanomaterials (Basel). 2025-7-14

[2]
Decoration of silver and silver oxide nanoparticles on a magnetic albumin modified Chitosan support and its catalytic efficiency investigation.

Sci Rep. 2025-7-12

[3]
Green synthesis of silver nanoparticles using Keratinase from Pseudomonas aeruginosa-C1M, characterization and applications as novel multifunctional biocatalyst.

BMC Biotechnol. 2025-4-11

[4]
Waste upcycling of Sapota peels as a green route for the synthesis of silver nanoparticles and their application as catalytic and colorimetric detection of Co and Hg.

Discov Nano. 2024-11-21

[5]
A green approach to improve antibacterial properties of PVC/PVDF film doped by silver nanoparticles via nanosecond laser ablation for wound healing application.

Sci Rep. 2024-11-13

[6]
Evaluating the pharmacological activities of -Silver nanoparticles induced apoptosis against colon cancer cells (HCT-116).

Food Sci Nutr. 2024-5-27

[7]
Synthesis of Silver Nanoparticles Using Extracts from Different Parts of the Kunth Plant: Characterization and In Vitro Antimicrobial Activity.

Pharmaceuticals (Basel). 2024-7-2

[8]
Mentha longifolia assisted nanostructures: An approach to obliterate microbial biofilms.

PLoS One. 2024

[9]
Crystallographic structure, antibacterial effect, and catalytic activities of fig extract mediated silver nanoparticles.

Heliyon. 2024-6-4

[10]
Biosynthesis of JC-LaCoO magnetic nanoparticles explored in catalytic and SMMs properties.

Sci Rep. 2023-12-13

本文引用的文献

[1]
Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract.

Biochem Biophys Res Commun. 2018-8-6

[2]
Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens.

Front Microbiol. 2018-7-16

[3]
Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants.

Sci Rep. 2018-4-19

[4]
Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange.

J Photochem Photobiol B. 2018-1

[5]
Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica.

Biochem Biophys Res Commun. 2017-8-26

[6]
A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.

J Adv Res. 2016-1

[7]
Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water.

J Colloid Interface Sci. 2016-1-15

[8]
Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment.

Sci Rep. 2015-7-17

[9]
Preparation of silver nanoparticles in the presence of chitosan by electrochemical method.

Carbohydr Polym. 2012-3-7

[10]
Catalytic degradation of organic dyes using biosynthesized silver nanoparticles.

Micron. 2013-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索