Suppr超能文献

间歇性阳光和余热的可整合利用,用于按需进行水煤气变换反应。

Integrable utilization of intermittent sunlight and residual heat for on-demand CO conversion with water.

作者信息

Shi Xianjin, Peng Wei, Huang Yu, Gao Chao, Fu Yiman, Wang Zhenyu, Yang Leting, Zhu Zixuan, Cao Junji, Rao Fei, Zhu Gangqiang, Lee Shuncheng, Xiong Yujie

机构信息

State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.

Center of Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an, China.

出版信息

Nat Commun. 2024 Nov 22;15(1):10135. doi: 10.1038/s41467-024-54587-2.

Abstract

Abundant residual heat from industrial emissions may provide energy resource for CO conversion, which relies on H gas and cannot be accomplished at low temperatures. Here, we report an approach to store electrons and hydrogen atoms in catalysts using sunlight and water, which can be released for CO reduction in dark at relatively low temperatures (150-300 °C), enabling on-demand CO conversion. As a proof of concept, a model catalyst is developed by loading single Cu sites on hexagonal tungsten trioxide (Cu/WO). Under light illumination, hydrogen atoms are generated through photocatalytic water splitting and stored together with electrons in Cu/WO, forming a metastable intermediate (Cu/HWO). Subsequent activation of Cu/HWO through low-temperature heating releases the stored electrons and hydrogen atoms, reducing CO into valuable products. Furthermore, we demonstrate the practical feasibility of utilizing natural sunlight to drive the process, opening an avenue for harnessing intermittent solar energy for CO utilization.

摘要

工业排放产生的大量余热可为一氧化碳转化提供能源,一氧化碳转化依赖氢气且无法在低温下实现。在此,我们报告了一种利用阳光和水在催化剂中存储电子和氢原子的方法,这些电子和氢原子可在相对低温(150 - 300°C)的黑暗环境中释放用于一氧化碳还原,从而实现按需一氧化碳转化。作为概念验证,通过在六方三氧化钨(Cu/WO₃)上负载单铜位点开发了一种模型催化剂。在光照下,通过光催化水分解产生氢原子,并与电子一起存储在Cu/WO₃中,形成亚稳中间体(Cu/H - WO₃)。随后通过低温加热激活Cu/H - WO₃,释放存储的电子和氢原子,将一氧化碳还原为有价值的产物。此外,我们证明了利用自然阳光驱动该过程的实际可行性,为利用间歇性太阳能进行一氧化碳利用开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec6/11584809/35dd9969f148/41467_2024_54587_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验