Suppr超能文献

评估新冠病毒病中的功能传播模式。

Assessing functional propagation patterns in COVID-19.

作者信息

Zanin Massimiliano, Papo David

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.

Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.

出版信息

Chaos Solitons Fractals. 2020 Sep;138:109993. doi: 10.1016/j.chaos.2020.109993. Epub 2020 Jun 12.

Abstract

Among the many efforts done by the scientific community to help coping with the COVID-19 pandemic, one of the most important has been the creation of models to describe its propagation, as these are expected to guide the deployment of containment and health policies. These models are commonly based on exogenous information, as e.g. mobility data, whose limitedness always compromise the reliability of obtained results. In this contribution we propose a different approach, based on extracting relationships between the evolution of the disease in different regions through information theoretical metrics. In a way similar to what is commonly done in neuroscience, propagation is understood as information transfer, and the resulting propagation patterns are represented and studied as functional networks. By applying this methodology to the dynamics of COVID-19 in several countries and regions thereof, we were able to reconstruct static and time-varying propagation graphs. We further discuss the advantages, promises and open research questions associated with this functional approach.

摘要

在科学界为帮助应对新冠疫情所做的诸多努力中,最重要的一项是创建描述其传播的模型,因为这些模型有望指导防控和卫生政策的部署。这些模型通常基于外部信息,例如流动性数据,其局限性总是会影响所得结果的可靠性。在本论文中,我们提出了一种不同的方法,该方法基于通过信息理论指标提取不同地区疾病演变之间的关系。类似于神经科学中常见的做法,传播被理解为信息传递,并且由此产生的传播模式被表示为功能网络并进行研究。通过将这种方法应用于几个国家及其地区的新冠疫情动态,我们能够重建静态和随时间变化的传播图。我们进一步讨论了与这种功能方法相关的优点、前景和开放的研究问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/526a/7290208/1394414b7966/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验