文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

手性离子液体:结构多样性、性质及在特定分离技术中的应用。

Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques.

机构信息

Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland.

Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.

出版信息

Int J Mol Sci. 2020 Jun 15;21(12):4253. doi: 10.3390/ijms21124253.


DOI:10.3390/ijms21124253
PMID:32549300
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7352568/
Abstract

Ionic liquids (ILs) are chemical compounds composed of ions with melting points below 100 °C exhibiting a design feature. ILs are commonly used as the so-called green solvents, reagents or highly efficient catalysts in varied chemical processes. The huge application potential of ionic liquids (IL) justifies the growing interest in these compounds. In the last decade, increasing attention has been devoted to the development of new methods in the synthesis of stable chiral ionic liquids (CILs) and their application in various separation techniques. The beginnings of the successful use of CILs to separate enantiomers date back to the 1990 s. Most chiral ILs are based on chiral cations or chiral anions. There is also a limited number of CILs possessing both a chiral cation and a chiral anion. Due to the high molecular diversity of both ions, of which at least one has a chiral center, we have the possibility to design a large variety of optically active structures, thus expanding the range of CIL applications. Research utilizing chiral ionic liquids only recently has become more popular. However, it is the area that still has great potential for future development. This review aimed to describe the diversity of structures, properties and examples of applications of chiral ionic liquids as new chiral solid materials and chiral components of the anisotropic environment, providing chiral recognition of enantiomeric analytes, which is useful in liquid chromatography, countercurrent chromatography and other various CIL-based extraction techniques including aqueous biphasic (ABS) extraction systems, solid-liquid two-phase systems, liquid-liquid extraction systems with hydrophilic CILs, liquid-liquid extraction systems with hydrophobic CILs, solid-phase extraction and induced-precipitation techniques developed in the recent years. The growing demand for pure enantiomers in the pharmaceutical and food industries sparks further development in the field of extraction and separation systems modified with CILs highlighting them as affordable and environmentally friendly both chiral selectors and solvents.

摘要

离子液体(ILs)是由熔点低于 100°C 的离子组成的化合物,具有设计特点。ILs 通常用作所谓的绿色溶剂、试剂或在各种化学过程中的高效催化剂。离子液体(IL)的巨大应用潜力证明了人们对这些化合物越来越感兴趣。在过去的十年中,人们越来越关注开发合成稳定手性离子液体(CILs)的新方法及其在各种分离技术中的应用。成功使用 CILs 分离对映异构体的开端可以追溯到 20 世纪 90 年代。大多数手性 ILs 基于手性阳离子或手性阴离子。也有数量有限的 CILs 同时具有手性阳离子和手性阴离子。由于两个离子(至少有一个具有手性中心)的分子多样性很高,我们有可能设计出各种各样的光学活性结构,从而扩大 CIL 的应用范围。利用手性离子液体的研究直到最近才变得更加流行。然而,它仍然是一个具有巨大发展潜力的领域。本综述旨在描述手性离子液体作为新型手性固体材料和各向异性环境中手性组成部分的结构、性质和应用实例的多样性,提供对手映体分析物的手性识别,这在手性液相色谱、逆流色谱和其他各种基于 CIL 的提取技术中很有用,包括两相双水相(ABS)萃取系统、亲水 CIL 的液-液萃取系统、疏水 CIL 的液-液萃取系统、固相萃取和近年来开发的诱导沉淀技术。制药和食品工业对纯对映异构体的需求不断增长,推动了 CIL 改性的提取和分离系统领域的进一步发展,突出了它们作为经济实惠且环境友好的手性选择剂和溶剂的地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/dae2e4ec3659/ijms-21-04253-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/63694c9a5e15/ijms-21-04253-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/8bc92aab213e/ijms-21-04253-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/705bd0cd3925/ijms-21-04253-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/1b89d826f82d/ijms-21-04253-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/17d74046c143/ijms-21-04253-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/ef2c1c87258c/ijms-21-04253-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/2bf1f9cf3ea0/ijms-21-04253-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/92ca6c079bc2/ijms-21-04253-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/72fe6d9bc659/ijms-21-04253-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/48655390a3fa/ijms-21-04253-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/90683f5b2eb0/ijms-21-04253-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/180dd6dbdc08/ijms-21-04253-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/b1afe0325f4f/ijms-21-04253-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/f9c33e76ce56/ijms-21-04253-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/097153c302f3/ijms-21-04253-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/b241e411d58d/ijms-21-04253-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/dae2e4ec3659/ijms-21-04253-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/63694c9a5e15/ijms-21-04253-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/8bc92aab213e/ijms-21-04253-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/705bd0cd3925/ijms-21-04253-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/1b89d826f82d/ijms-21-04253-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/17d74046c143/ijms-21-04253-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/ef2c1c87258c/ijms-21-04253-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/2bf1f9cf3ea0/ijms-21-04253-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/92ca6c079bc2/ijms-21-04253-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/72fe6d9bc659/ijms-21-04253-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/48655390a3fa/ijms-21-04253-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/90683f5b2eb0/ijms-21-04253-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/180dd6dbdc08/ijms-21-04253-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/b1afe0325f4f/ijms-21-04253-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/f9c33e76ce56/ijms-21-04253-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/097153c302f3/ijms-21-04253-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/b241e411d58d/ijms-21-04253-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e705/7352568/dae2e4ec3659/ijms-21-04253-g017.jpg

相似文献

[1]
Chiral Ionic Liquids: Structural Diversity, Properties and Applications in Selected Separation Techniques.

Int J Mol Sci. 2020-6-15

[2]
Chiral ionic liquids in chromatographic and electrophoretic separations.

J Chromatogr A. 2014-5-28

[3]
Enantioselective liquid-liquid extraction of 2-cyclohexylmandelic acid enantiomers using chiral ionic liquids.

Chirality. 2024-6

[4]
Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review.

Anal Chim Acta. 2023-9-15

[5]
Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

J Sep Sci. 2017-9-28

[6]
[Recent advance of novel chiral separation systems in capillary electrophoresis].

Se Pu. 2020-9-8

[7]
Enantioseparation by Capillary Electrophoresis Using Ionic Liquids as Chiral Selectors.

Crit Rev Anal Chem. 2018-4-11

[8]
Chiral ionic liquids: synthesis, properties, and enantiomeric recognition.

J Org Chem. 2008-4-4

[9]
Recent advances in the enantioseparation promoted by ionic liquids and their resolution mechanisms.

J Chromatogr A. 2020-7-1

[10]
Ionic liquids: solvents and sorbents in sample preparation.

J Sep Sci. 2017-10-17

引用本文的文献

[1]
Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes.

Molecules. 2024-11-29

[2]
Mixed Solvency Concept to Replace Harmful Organic Solvent: Recent Trends and Future Challenges in Formulation Development.

Comb Chem High Throughput Screen. 2025

[3]
Recent Progress on Green New Phase Extraction and Preparation of Polyphenols in Edible Oil.

Molecules. 2023-12-18

[4]
Expeditious Discovery of Small-Molecule Thermoresponsive Ionic Liquid Materials: A Review.

Molecules. 2023-9-27

[5]
Recent applications and chiral separation development based on stationary phases in open tubular capillary electrochromatography (2019-2022).

J Pharm Anal. 2023-4

[6]
Recent Advances in Biocompatible Ionic Liquids in Drug Formulation and Delivery.

Pharmaceutics. 2023-4-7

[7]
Extraction, structural characterization, and antioxidant activity of polysaccharides derived from L.

Front Nutr. 2023-3-21

[8]
Selective Recovery of Cadmium, Cobalt, and Nickel from Spent Ni-Cd Batteries Using Adogen 464 and Mesoporous Silica Derivatives.

Int J Mol Sci. 2022-8-4

[9]
The Physical Chemistry and Chemical Physics (PCCP) Section of the in Its Publications: The First 300 Thematic Articles in the First 3 Years.

Int J Mol Sci. 2021-12-27

[10]
Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction.

Molecules. 2021-7-9

本文引用的文献

[1]
Chiral protic imidazolium salts with a (-)-menthol fragment in the cation: synthesis, properties and use in the Diels-Alder reaction.

RSC Adv. 2018-3-13

[2]
Visual chiral recognition of aromatic amino acids with (S)-mandelic acid-based ionic liquids via complexation.

Talanta. 2020-9-1

[3]
Enantioseparation of flurbiprofen enantiomers using chiral ionic liquids by liquid-liquid extraction.

Chirality. 2019-5-7

[4]
Chiral Recognition Methods in Analytical Chemistry: Role of the Chiral Ionic Liquids.

Crit Rev Anal Chem. 2019-5-5

[5]
Novel chiral ionic liquids stationary phases for the enantiomer separation of chiral acid by high-performance liquid chromatography.

Chirality. 2018-2-24

[6]
Recent advances on ionic liquid uses in separation techniques.

J Chromatogr A. 2017-9-22

[7]
Enantioselective Precipitate of Amines, Amino Alcohols, and Amino Acids via Schiff Base Reaction in the Presence of Chiral Ionic Liquid.

Org Lett. 2017-9-13

[8]
Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.

Top Curr Chem (Cham). 2017-8-10

[9]
Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammonium-based Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

Chemphyschem. 2017-8-5

[10]
Multiscale Studies on Ionic Liquids.

Chem Rev. 2017-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索