Suppr超能文献

方法识别电子健康记录中的痴呆症:比较认知测试分数与痴呆症算法。

Methods to identify dementia in the electronic health record: Comparing cognitive test scores with dementia algorithms.

机构信息

Department of Medicine, University of Washington, 1959 North East Pacific Street, Seattle, WA, 98195, USA; Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave, Seattle, WA, 98101, USA.

Department of Medicine, University of Washington, 1959 North East Pacific Street, Seattle, WA, 98195, USA; Department of Epidemiology, University of Washington, 1959 North East Pacific Street, Seattle, WA, 98195, USA; Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA, 98195, USA.

出版信息

Healthc (Amst). 2020 Jun;8(2):100430. doi: 10.1016/j.hjdsi.2020.100430. Epub 2020 May 22.

Abstract

BACKGROUND

Epidemiologic studies often use diagnosis codes to identify dementia outcomes. It remains unknown to what extent cognitive screening test results add value in identifying dementia cases in big data studies leveraging electronic health record (EHR) data. We examined test scores from EHR data and compared results with dementia algorithms.

METHODS

This retrospective cohort study included patients 60+ years of age from Kaiser Permanente Washington (KPWA) during 2013-2018 and the Veterans Health Affairs (VHA) during 2012-2015. Results from the Mini Mental State Examination (MMSE) and the Saint Louis University Mental Status Examination (SLUMS) cognitive screening exams, were classified as showing dementia or not. Multiple dementia algorithms were created using combinations of diagnosis codes, pharmacy records, and specialty care visits. Correlations between test scores and algorithms were assessed.

RESULTS

3,690 of 112,917 KPWA patients and 2,981 of 102,981 VHA patients had cognitive test results in the EHR. In KPWA, dementia prevalence ranged from 6.4%-8.1% depending on the algorithm used and in the VHA, 8.9%-12.1%. The algorithm which best agreed with test scores required ≥2 dementia diagnosis codes in 12 months; at KPWA, 14.8% of people meeting this algorithm had an MMSE score, of whom 65% had a score indicating dementia. Within VHA, those figures were 6.2% and 77% respectively.

CONCLUSIONS

Although cognitive test results were rarely available, agreement was good with algorithms requiring ≥2 dementia diagnosis codes, supporting the accuracy of this algorithm.

IMPLICATIONS

These scores may add value in identifying dementia cases for EHR-based research studies.

摘要

背景

流行病学研究常使用诊断代码来识别痴呆症的结局。但在利用电子健康记录(EHR)数据的大数据研究中,认知筛查测试结果在多大程度上能增加识别痴呆症病例的价值仍不清楚。我们检验了 EHR 数据中的测试分数,并将结果与痴呆症算法进行了比较。

方法

本回顾性队列研究纳入了 2013 年至 2018 年期间 Kaiser Permanente Washington(KPWA)和 2012 年至 2015 年期间 Veterans Health Affairs(VHA)的 60 岁以上患者。Mini 精神状态检查(MMSE)和圣路易斯大学精神状态检查(SLUMS)认知筛查检查的结果被分为痴呆或非痴呆。使用诊断代码、药房记录和专科护理就诊的组合创建了多个痴呆症算法。评估了测试分数与算法之间的相关性。

结果

KPWA 中有 3690 名(112917 名患者的 3.3%)和 VHA 中有 2981 名(102981 名患者的 2.9%)患者的 EHR 中记录了认知测试结果。在 KPWA 中,根据使用的算法,痴呆症的患病率从 6.4%到 8.1%不等,而在 VHA 中,这一比例为 8.9%到 12.1%。与测试分数最一致的算法要求在 12 个月内至少有 2 个痴呆症诊断代码;在 KPWA,符合该算法的 14.8%的人有 MMSE 分数,其中 65%的人分数表明患有痴呆症。在 VHA 中,这两个数字分别为 6.2%和 77%。

结论

尽管认知测试结果很少,但与需要至少 2 个痴呆症诊断代码的算法的一致性很好,支持了该算法的准确性。

意义

这些分数可能会增加 EHR 为基础的研究中识别痴呆症病例的价值。

相似文献

引用本文的文献

本文引用的文献

10
Alzheimer's disease.阿尔茨海默病
N Engl J Med. 2010 Jan 28;362(4):329-44. doi: 10.1056/NEJMra0909142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验