Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2020 Jun 19;368(6497):1352-1357. doi: 10.1126/science.aba3823.
Electrochemistry offers opportunities to promote single-electron transfer (SET) redox-neutral chemistries similar to those recently discovered using visible-light photocatalysis but without the use of an expensive photocatalyst. Herein, we introduce a microfluidic redox-neutral electrochemistry (μRN-eChem) platform that has broad applicability to SET chemistry, including radical-radical cross-coupling, Minisci-type reactions, and nickel-catalyzed C(sp)-O cross-coupling. The cathode and anode simultaneously generate the corresponding reactive intermediates, and selective transformation is facilitated by the rapid molecular diffusion across a microfluidic channel that outpaces the decomposition of the intermediates. μRN-eChem was shown to enable a two-step gram-scale electrosynthesis of a nematic liquid crystal compound, demonstrating its practicality.
电化学提供了促进类似于最近使用可见光光催化发现的单电子转移(SET)氧化还原中性化学的机会,但无需使用昂贵的光催化剂。在此,我们引入了一种微流控氧化还原中性电化学(μRN-eChem)平台,该平台具有广泛的适用性,适用于 SET 化学,包括自由基-自由基交叉偶联、Minisci 型反应和镍催化的 C(sp)-O 交叉偶联。阴极和阳极同时生成相应的反应性中间体,并且快速分子扩散通过微流道进行,超过了中间体的分解速度,从而促进了选择性转化。μRN-eChem 被证明能够实现两步克规模的向列液晶化合物的电合成,展示了其实用性。