Suppr超能文献

组织学组织成分是基于机器学习的前列腺癌检测和分级在前列腺切除标本中的主要线索。

Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens.

机构信息

Baines Imaging Research Laboratory, London Regional Cancer Program, London, Ontario, Canada.

Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.

出版信息

Sci Rep. 2020 Jun 18;10(1):9911. doi: 10.1038/s41598-020-66849-2.

Abstract

Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting and grading prostate cancer on digital histopathology images have been reported using machine learning techniques. However, the importance and applicability of those methods have not been fully investigated. We computed three-class tissue component maps (TCMs) from the images, where each pixel was labeled as nuclei, lumina, or other. We applied seven different machine learning approaches: three non-deep learning classifiers with features extracted from TCMs, and four deep learning, using transfer learning with the 1) TCMs, 2) nuclei maps, 3) lumina maps, and 4) raw images for cancer detection and grading on whole-mount RP tissue sections. We performed leave-one-patient-out cross-validation against expert annotations using 286 whole-slide images from 68 patients. For both cancer detection and grading, transfer learning using TCMs performed best. Transfer learning using nuclei maps yielded slightly inferior overall performance, but the best performance for classifying higher-grade cancer. This suggests that 3-class TCMs provide the major cues for cancer detection and grading primarily using nucleus features, which are the most important information for identifying higher-grade cancer.

摘要

自动检测和分级根治性前列腺切除术 (RP) 切片上的癌变区域有助于图形化和定量病理学报告,可能有益于术后预后、复发预测和 RP 后的治疗计划。使用机器学习技术已经报道了在数字组织病理学图像上检测和分级前列腺癌的有希望的结果。然而,这些方法的重要性和适用性尚未得到充分研究。我们从图像中计算了三类组织成分图 (TCM),其中每个像素都标记为细胞核、管腔或其他。我们应用了七种不同的机器学习方法:三种非深度学习分类器,使用 TCM 提取特征,以及四种深度学习方法,使用迁移学习,使用 1) TCMs、2) 细胞核图、3) 管腔图和 4) 原始图像,用于检测和分级整个 RP 组织切片上的癌症。我们使用 68 名患者的 286 张全幻灯片图像对每位患者进行了一次留一患者交叉验证,与专家注释进行比较。对于癌症检测和分级,使用 TCM 的迁移学习表现最佳。使用细胞核图的迁移学习整体性能略差,但对分类高级别癌症的性能最佳。这表明,3 类 TCM 主要使用细胞核特征提供了癌症检测和分级的主要线索,细胞核特征是识别高级别癌症的最重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25bd/7303108/5923c2879647/41598_2020_66849_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验