Suppr超能文献

二十一世纪北极海洋酸化的紧急制约因素。

Emergent constraint on Arctic Ocean acidification in the twenty-first century.

机构信息

LMD/IPSL, Ecole Normale Supérieure/PSL Université, CNRS, Ecole Polytechnique, Sorbonne Université, Paris, France.

Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland.

出版信息

Nature. 2020 Jun;582(7812):379-383. doi: 10.1038/s41586-020-2360-3. Epub 2020 Jun 17.

Abstract

The ongoing uptake of anthropogenic carbon by the ocean leads to ocean acidification, a process that results in a reduction in pH and in the saturation state of biogenic calcium carbonate minerals aragonite (Ω) and calcite (Ω). Because of its naturally low Ω and Ω (refs. ), the Arctic Ocean is considered the region most susceptible to future acidification and associated ecosystem impacts. However, the magnitude of projected twenty-first century acidification differs strongly across Earth system models. Here we identify an emergent multi-model relationship between the simulated present-day density of Arctic Ocean surface waters, used as a proxy for Arctic deep-water formation, and projections of the anthropogenic carbon inventory and coincident acidification. By applying observations of sea surface density, we constrain the end of twenty-first century Arctic Ocean anthropogenic carbon inventory to 9.0 ± 1.6 petagrams of carbon and the basin-averaged Ω and Ω to 0.76 ± 0.06 and 1.19 ± 0.09, respectively, under the high-emissions Representative Concentration Pathway 8.5 climate scenario. Our results indicate greater regional anthropogenic carbon storage and ocean acidification than previously projected and increase the probability that large parts of the mesopelagic Arctic Ocean will be undersaturated with respect to calcite by the end of the century. This increased rate of Arctic Ocean acidification, combined with rapidly changing physical and biogeochemical Arctic conditions, is likely to exacerbate the impact of climate change on vulnerable Arctic marine ecosystems.

摘要

海洋持续吸收人为产生的碳导致海洋酸化,这一过程导致 pH 值降低和生物碳酸钙矿物文石(Ω)和方解石(Ω)的饱和度降低。由于其天然的低 Ω 和 Ω(参考文献),北冰洋被认为是最容易受到未来酸化和相关生态系统影响的地区。然而,地球系统模型对二十一世纪未来酸化的预测幅度差异很大。在这里,我们确定了一种新的多模型关系,即模拟的北冰洋表层海水密度(用作北冰洋深部形成的代理)与人为碳库存和伴随的酸化之间的关系。通过应用海面密度的观测结果,我们将二十一世纪末北冰洋人为碳库存的约束范围限制在 90 ± 16 太字节碳,在高排放代表性浓度路径 8.5 气候情景下,北冰洋的平均 Ω 和 Ω 分别为 0.76 ± 0.06 和 1.19 ± 0.09。我们的结果表明,与以前的预测相比,该地区的人为碳储存和海洋酸化程度更大,这增加了到本世纪末,大部分中层北冰洋将对方解石不饱和的可能性。这种北冰洋酸化速度的加快,加上北极地区迅速变化的物理和生物地球化学条件,很可能会加剧气候变化对脆弱的北极海洋生态系统的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验