Suppr超能文献

通过二分网络的轨迹聚类识别和预测帕金森病亚型。

Identifying and predicting Parkinson's disease subtypes through trajectory clustering via bipartite networks.

机构信息

University of Maryland College Park, College Park, MD, United States of America.

University of Maryland School of Medicine, Baltimore, MD, United States of America.

出版信息

PLoS One. 2020 Jun 17;15(6):e0233296. doi: 10.1371/journal.pone.0233296. eCollection 2020.

Abstract

Chronic medical conditions show substantial heterogeneity in their clinical features and progression. We develop the novel data-driven, network-based Trajectory Profile Clustering (TPC) algorithm for 1) identification of disease subtypes and 2) early prediction of subtype/disease progression patterns. TPC is an easily generalizable method that identifies subtypes by clustering patients with similar disease trajectory profiles, based not only on Parkinson's Disease (PD) variable severity, but also on their complex patterns of evolution. TPC is derived from bipartite networks that connect patients to disease variables. Applying our TPC algorithm to a PD clinical dataset, we identify 3 distinct subtypes/patient clusters, each with a characteristic progression profile. We show that TPC predicts the patient's disease subtype 4 years in advance with 72% accuracy for a longitudinal test cohort. Furthermore, we demonstrate that other types of data such as genetic data can be integrated seamlessly in the TPC algorithm. In summary, using PD as an example, we present an effective method for subtype identification in multidimensional longitudinal datasets, and early prediction of subtypes in individual patients.

摘要

慢性疾病在其临床特征和进展方面表现出显著的异质性。我们开发了一种新颖的数据驱动的基于网络的轨迹轮廓聚类(TPC)算法,用于:1)识别疾病亚型;2)早期预测亚型/疾病进展模式。TPC 是一种易于推广的方法,它通过基于患者相似的疾病轨迹轮廓聚类来识别亚型,不仅基于帕金森病(PD)的严重程度,还基于其复杂的演变模式。TPC 源自连接患者和疾病变量的二分网络。将我们的 TPC 算法应用于 PD 临床数据集,我们识别出 3 种不同的亚型/患者聚类,每个聚类都有其特征性的进展模式。我们表明,TPC 可以提前 4 年以 72%的准确率预测患者的疾病亚型,对于纵向测试队列。此外,我们还证明了其他类型的数据,如遗传数据,可以无缝地整合到 TPC 算法中。总之,我们以 PD 为例,提出了一种在多维纵向数据集中识别亚型和早期预测个体患者亚型的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972f/7299311/270a0ad24497/pone.0233296.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验