Suppr超能文献

使用三元组网络学习评估组织病理学图像的颜色相似性

Learning to Evaluate Color Similarity for Histopathology Images using Triplet Networks.

作者信息

Choudhary Anirudh, Wu Hang, Tong Li, Wang May D

机构信息

Georgia Institute of Technology Atlanta, GA.

Georgia Institute of Technology and Emory University Atlanta, GA.

出版信息

ACM BCB. 2019 Sep;2019:466-474. doi: 10.1145/3307339.3342170.

Abstract

Stain normalization is a crucial pre-processing step for histopathological image processing, and can help improve the accuracy of downstream tasks such as segmentation and classification. To evaluate the effectiveness of stain normalization methods, various metrics based on color-perceptual similarity and stain color evaluation have been proposed. However, there still exists a huge gap between metric evaluation and human perception, given the limited explainability power of existing metrics and inability to combine color and semantic information efficiently. Inspired by the effectiveness of deep neural networks in evaluating perceptual similarity of natural images, in this paper, we propose TriNet-P, a color-perceptual similarity metric for whole slide images, based on deep metric embeddings. We evaluate the proposed approach using four publicly available breast cancer histological datasets. The benefit of our approach is its representation efficiency of the perceptual factors associated with H&E stained images with minimal human intervention. We show that our metric can capture the semantic similarities, both at subject (patient) and laboratory levels, and leads to better performance in image retrieval and clustering tasks.

摘要

染色归一化是组织病理学图像处理的关键预处理步骤,有助于提高诸如分割和分类等下游任务的准确性。为了评估染色归一化方法的有效性,人们提出了各种基于颜色感知相似性和染色颜色评估的指标。然而,鉴于现有指标的解释能力有限且无法有效结合颜色和语义信息,指标评估与人类感知之间仍然存在巨大差距。受深度神经网络在评估自然图像感知相似性方面有效性的启发,在本文中,我们基于深度度量嵌入提出了TriNet-P,一种用于全切片图像的颜色感知相似性指标。我们使用四个公开可用的乳腺癌组织学数据集对所提出的方法进行评估。我们方法的优势在于其在最少人工干预的情况下对与苏木精-伊红(H&E)染色图像相关的感知因素的表示效率。我们表明,我们的指标能够在个体(患者)和实验室层面捕捉语义相似性,并在图像检索和聚类任务中带来更好的性能。

相似文献

7
Divergences in color perception between deep neural networks and humans.深度神经网络与人类在颜色感知上的差异。
Cognition. 2023 Dec;241:105621. doi: 10.1016/j.cognition.2023.105621. Epub 2023 Sep 14.

本文引用的文献

3
Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition.基于主干-分支集成卷积神经网络的视频人脸识别。
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):1002-1014. doi: 10.1109/TPAMI.2017.2700390. Epub 2017 May 2.
4
An alternative reference space for H&E color normalization.苏木精-伊红染色颜色标准化的另一种参考空间。
PLoS One. 2017 Mar 29;12(3):e0174489. doi: 10.1371/journal.pone.0174489. eCollection 2017.
5
Automatic batch-invariant color segmentation of histological cancer images.组织学癌症图像的自动批不变颜色分割
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:657-660. doi: 10.1109/ISBI.2011.5872492.
9
Stain Specific Standardization of Whole-Slide Histopathological Images.全切片组织病理学图像的染色特异性标准化
IEEE Trans Med Imaging. 2016 Feb;35(2):404-15. doi: 10.1109/TMI.2015.2476509. Epub 2015 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验