Suppr超能文献

基于隐马尔可夫模型并利用可调Q小波变换的癫痫发作检测

Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform.

作者信息

Dash Deba Prasad, H Kolekar Maheshkumar

机构信息

Department of Electrical Engineering, Indian Institute of Technology Patna, Bihta, Bihar 801103, India.

出版信息

J Biomed Res. 2020 Jan 22;34(3):170-179. doi: 10.7555/JBR.34.20190006.

Abstract

Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide. The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram (EEG) as a noninvasive procedure to record neuronal activities in the brain. EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals. Shannon entropy, collision entropy, transfer entropy, conditional probability, and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform. Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification. Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector. The accuracy of the proposed approach is higher for =2 and =10. Transfer entropy is observed to be significant for different class combinations. Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time. The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals. The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level.

摘要

癫痫是最常见的神经系统疾病之一,全球有7000万人受其影响。目前的工作重点是设计一种高效算法,通过使用脑电图(EEG)作为记录大脑神经元活动的非侵入性程序来自动检测癫痫发作。提取EEG信号的潜在动态以区分健康和癫痫发作的EEG信号。从可调Q小波变换的子带中提取香农熵、碰撞熵、转移熵、条件概率和 Hjorth 参数特征。使用 Kruskal-Wallis 检验为不同特征向量选择有效的分解级别,以实现良好的分类。使用判别相关分析融合技术组合不同特征,形成单个融合特征向量。对于 =2 和 =10,所提出方法的准确率更高。观察到转移熵对于不同的类别组合具有显著性。所提出的方法使用简单且稳健的特征以及隐藏马尔可夫模型,在对健康-癫痫发作EEG信号进行分类时实现了100%的准确率,且计算时间更少。在所提出的方法在对癫痫发作和非癫痫发作的表面EEG信号进行分类时评估其效率。该系统使用从不同J级别提取的有效特征对表面癫痫发作和非癫痫发作EEG片段进行分类时,准确率达到了96.87%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1eb/7324274/ee9c78bcc3a9/jbr-34-3-170-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验