Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040, Linz, Austria.
Adv Mater. 2017 Jul;29(27). doi: 10.1002/adma.201700749. Epub 2017 May 10.
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells.
假卤素在胶体量子点(CQD)太阳能电池活性层中的应用通过降低陷阱密度和实现厚 CQD 薄膜来提高太阳能电池的性能。假卤素是卤素的多原子类似物,其化学性质允许它们通过与 CQD 表面的强化学相互作用来取代卤素原子。拟卤化物硫氰酸根阴离子用于实现混合表面钝化。通过一系列场效应晶体管研究观察到,使用假卤素硫氰酸根阴离子处理后,陷阱态密度比对照样品降低了四倍。这直接转化为有史以来最厚的 CQD 活性层,这得益于新材料中增强的输运长度,与以前的 CQD 太阳能电池报告相比,外量子效率高达 80%,在激子峰处。