Suppr超能文献

基于机器学习的终生乳腺癌风险重新分类与 BOADICEA 模型比较:对筛查建议的影响。

Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations.

机构信息

Department of Clinical Research, Faculty of Medicine, University of Basel, Basel, Switzerland.

Oncogenetics and Cancer Prevention, Geneva University Hospitals, Geneva, Switzerland.

出版信息

Br J Cancer. 2020 Sep;123(5):860-867. doi: 10.1038/s41416-020-0937-0. Epub 2020 Jun 22.

Abstract

BACKGROUND

The clinical utility of machine-learning (ML) algorithms for breast cancer risk prediction and screening practices is unknown. We compared classification of lifetime breast cancer risk based on ML and the BOADICEA model. We explored the differences in risk classification and their clinical impact on screening practices.

METHODS

We used three different ML algorithms and the BOADICEA model to estimate lifetime breast cancer risk in a sample of 112,587 individuals from 2481 families from the Oncogenetic Unit, Geneva University Hospitals. Performance of algorithms was evaluated using the area under the receiver operating characteristic (AU-ROC) curve. Risk reclassification was compared for 36,146 breast cancer-free women of ages 20-80. The impact on recommendations for mammography surveillance was based on the Swiss Surveillance Protocol.

RESULTS

The predictive accuracy of ML-based algorithms (0.843 ≤ AU-ROC ≤ 0.889) was superior to BOADICEA (AU-ROC = 0.639) and reclassified 35.3% of women in different risk categories. The largest reclassification (20.8%) was observed in women characterised as 'near population' risk by BOADICEA. Reclassification had the largest impact on screening practices of women younger than 50.

CONCLUSION

ML-based reclassification of lifetime breast cancer risk occurred in approximately one in three women. Reclassification is important for younger women because it impacts clinical decision- making for the initiation of screening.

摘要

背景

机器学习(ML)算法在乳腺癌风险预测和筛查实践中的临床实用性尚不清楚。我们比较了基于 ML 和 BOADICEA 模型的终生乳腺癌风险分类。我们探讨了风险分类的差异及其对筛查实践的临床影响。

方法

我们使用三种不同的 ML 算法和 BOADICEA 模型,在来自日内瓦大学医院肿瘤遗传学单位的 2481 个家族的 112587 名个体中估计终生乳腺癌风险。使用接收者操作特征曲线下的面积(AU-ROC)评估算法的性能。对 36146 名年龄在 20-80 岁之间无乳腺癌的女性进行风险重新分类。根据瑞士监测方案,基于风险推荐乳房 X 线摄影监测。

结果

基于 ML 的算法(0.843≤AU-ROC≤0.889)的预测准确性优于 BOADICEA(AU-ROC=0.639),并重新分类了 35.3%的不同风险类别的女性。在 BOADICEA 定义的“接近人群”风险的女性中观察到最大的重新分类(20.8%)。重新分类对 50 岁以下女性的筛查实践影响最大。

结论

大约三分之一的女性会出现基于 ML 的终生乳腺癌风险重新分类。重新分类对年轻女性很重要,因为它会影响开始筛查的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ee9/7463251/33aa442a9ad7/41416_2020_937_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验