Suppr超能文献

在整个语言网络中,相对于词义而言,对句法缺乏选择性。

Lack of selectivity for syntax relative to word meanings throughout the language network.

作者信息

Fedorenko Evelina, Blank Idan Asher, Siegelman Matthew, Mineroff Zachary

机构信息

Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.

Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA.

出版信息

Cognition. 2020 Oct;203:104348. doi: 10.1016/j.cognition.2020.104348. Epub 2020 Jun 20.

Abstract

To understand what you are reading now, your mind retrieves the meanings of words and constructions from a linguistic knowledge store (lexico-semantic processing) and identifies the relationships among them to construct a complex meaning (syntactic or combinatorial processing). Do these two sets of processes rely on distinct, specialized mechanisms or, rather, share a common pool of resources? Linguistic theorizing, empirical evidence from language acquisition and processing, and computational modeling have jointly painted a picture whereby lexico-semantic and syntactic processing are deeply inter-connected and perhaps not separable. In contrast, many current proposals of the neural architecture of language continue to endorse a view whereby certain brain regions selectively support syntactic/combinatorial processing, although the locus of such "syntactic hub", and its nature, vary across proposals. Here, we searched for selectivity for syntactic over lexico-semantic processing using a powerful individual-subjects fMRI approach across three sentence comprehension paradigms that have been used in prior work to argue for such selectivity: responses to lexico-semantic vs. morpho-syntactic violations (Experiment 1); recovery from neural suppression across pairs of sentences differing in only lexical items vs. only syntactic structure (Experiment 2); and same/different meaning judgments on such sentence pairs (Experiment 3). Across experiments, both lexico-semantic and syntactic conditions elicited robust responses throughout the left fronto-temporal language network. Critically, however, no regions were more strongly engaged by syntactic than lexico-semantic processing, although some regions showed the opposite pattern. Thus, contra many current proposals of the neural architecture of language, syntactic/combinatorial processing is not separable from lexico-semantic processing at the level of brain regions-or even voxel subsets-within the language network, in line with strong integration between these two processes that has been consistently observed in behavioral and computational language research. The results further suggest that the language network may be generally more strongly concerned with meaning than syntactic form, in line with the primary function of language-to share meanings across minds.

摘要

为了理解你现在正在阅读的内容,你的大脑会从语言知识储备中检索单词和结构的含义(词汇语义处理),并识别它们之间的关系以构建复杂的意义(句法或组合处理)。这两组过程是依赖于不同的、专门的机制,还是共享一个共同的资源库呢?语言理论、语言习得与处理的实证证据以及计算建模共同描绘了一幅图景,即词汇语义和句法处理紧密相连,或许无法分开。相比之下,当前许多关于语言神经结构的提议仍然支持这样一种观点,即某些脑区选择性地支持句法/组合处理,尽管这种“句法中枢”的位置及其性质在不同提议中有所不同。在这里,我们使用一种强大的个体受试者功能磁共振成像方法,在先前研究中用于论证这种选择性的三种句子理解范式中,寻找句法处理相对于词汇语义处理的选择性:对词汇语义与形态句法违反的反应(实验1);在仅词汇项不同与仅句法结构不同的句子对中从神经抑制中恢复(实验2);以及对这些句子对的相同/不同意义判断(实验3)。在所有实验中,词汇语义和句法条件在整个左额颞语言网络中都引发了强烈的反应。然而,至关重要的是,没有哪个区域在句法处理上比词汇语义处理更活跃,尽管有些区域表现出相反的模式。因此,与当前许多关于语言神经结构的提议相反,在语言网络内的脑区甚至体素子集中,句法/组合处理与词汇语义处理是不可分离的,这与在行为和计算语言研究中一直观察到的这两个过程之间的强整合一致。结果进一步表明,语言网络可能总体上更关注意义而非句法形式,这与语言的主要功能——在不同思维之间共享意义——相符。

相似文献

1
Lack of selectivity for syntax relative to word meanings throughout the language network.
Cognition. 2020 Oct;203:104348. doi: 10.1016/j.cognition.2020.104348. Epub 2020 Jun 20.
2
Lexico-semantics obscures lexical syntax.
Front Lang Sci. 2023;2. doi: 10.3389/flang.2023.1217837. Epub 2023 Aug 9.
3
An Attempt to Conceptually Replicate the Dissociation between Syntax and Semantics during Sentence Comprehension.
Neuroscience. 2019 Aug 10;413:219-229. doi: 10.1016/j.neuroscience.2019.06.003. Epub 2019 Jun 11.
4
Seeing words in context: the interaction of lexical and sentence level information during reading.
Brain Res Cogn Brain Res. 2004 Mar;19(1):59-73. doi: 10.1016/j.cogbrainres.2003.10.022.
6
Lexical and syntactic representations in the brain: an fMRI investigation with multi-voxel pattern analyses.
Neuropsychologia. 2012 Mar;50(4):499-513. doi: 10.1016/j.neuropsychologia.2011.09.014. Epub 2011 Sep 17.
8
Neural correlates of semantic-driven syntactic parsing in sentence comprehension.
Neuroimage. 2024 Apr 1;289:120543. doi: 10.1016/j.neuroimage.2024.120543. Epub 2024 Feb 17.
10
Frequency tagging of syntactic structure or lexical properties; a registered MEG study.
Cortex. 2022 Jan;146:24-38. doi: 10.1016/j.cortex.2021.09.012. Epub 2021 Oct 20.

引用本文的文献

2
Neural basis of linguistic factors involved in thought: an fMRI study with native signers.
Front Psychol. 2025 Aug 14;16:1582136. doi: 10.3389/fpsyg.2025.1582136. eCollection 2025.
3
Personalized neuroimaging reveals the impact of children's interests on language processing in the brain.
Imaging Neurosci (Camb). 2024 Oct 30;2. doi: 10.1162/imag_a_00339. eCollection 2024.
4
Binomial order is a speech marker of psychosis and thought disorder.
Sci Rep. 2025 Aug 6;15(1):28819. doi: 10.1038/s41598-025-14681-x.
5
Relationship between grammar and schizophrenia: a systematic review and meta-analysis.
Commun Med (Lond). 2025 Jun 16;5(1):235. doi: 10.1038/s43856-025-00944-1.
6
Cortical language areas are coupled via a soft hierarchy of model-based linguistic features.
bioRxiv. 2025 Jun 3:2025.06.02.657491. doi: 10.1101/2025.06.02.657491.
7
A two-dimensional space of linguistic representations shared across individuals.
bioRxiv. 2025 May 23:2025.05.21.655330. doi: 10.1101/2025.05.21.655330.
8
Innate network mechanisms of temporal pole for semantic cognition in neonatal and adult twin studies.
Nat Commun. 2025 Apr 23;16(1):3835. doi: 10.1038/s41467-025-58896-y.
9
Constructed languages are processed by the same brain mechanisms as natural languages.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2313473122. doi: 10.1073/pnas.2313473122. Epub 2025 Mar 17.
10
Universality of representation in biological and artificial neural networks.
bioRxiv. 2024 Dec 26:2024.12.26.629294. doi: 10.1101/2024.12.26.629294.

本文引用的文献

1
Composition is the Core Driver of the Language-selective Network.
Neurobiol Lang (Camb). 2020 Mar 1;1(1):104-134. doi: 10.1162/nol_a_00005. eCollection 2020.
2
Agrammatism and Paragrammatism: A Cortical Double Dissociation Revealed by Lesion-Symptom Mapping.
Neurobiol Lang (Camb). 2020;1(2):208-225. doi: 10.1162/nol_a_00010. Epub 2020 Jun 1.
4
Semantic and syntactic composition of minimal adjective-noun phrases in Dutch: An MEG study.
Neuropsychologia. 2021 May 14;155:107754. doi: 10.1016/j.neuropsychologia.2021.107754. Epub 2021 Jan 18.
5
Discourse-level comprehension engages medial frontal Theory of Mind brain regions even for expository texts.
Lang Cogn Neurosci. 2020;35(6):780-796. doi: 10.1080/23273798.2018.1525494. Epub 2018 Sep 26.
6
Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks.
J Neurophysiol. 2020 Nov 1;124(5):1415-1448. doi: 10.1152/jn.00753.2019. Epub 2020 Sep 23.
7
Extraction from subjects: Differences in acceptability depend on the discourse function of the construction.
Cognition. 2020 Nov;204:104293. doi: 10.1016/j.cognition.2020.104293. Epub 2020 Jul 27.
8
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.
9
No evidence for differences among language regions in their temporal receptive windows.
Neuroimage. 2020 Oct 1;219:116925. doi: 10.1016/j.neuroimage.2020.116925. Epub 2020 May 11.
10
The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation.
J Neurosci. 2020 Jun 3;40(23):4536-4550. doi: 10.1523/JNEUROSCI.2036-19.2020. Epub 2020 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验