文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis.

作者信息

Das Sabya Sachi, Bharadwaj Priyanshu, Bilal Muhammad, Barani Mahmood, Rahdar Abbas, Taboada Pablo, Bungau Simona, Kyzas George Z

机构信息

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.

UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France.

出版信息

Polymers (Basel). 2020 Jun 22;12(6):1397. doi: 10.3390/polym12061397.


DOI:10.3390/polym12061397
PMID:32580366
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7362228/
Abstract

In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/ad46ab1aa87f/polymers-12-01397-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/503fc61cc748/polymers-12-01397-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/2a12a3814edb/polymers-12-01397-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/10fabbf072b9/polymers-12-01397-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/9ba180e48f3b/polymers-12-01397-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/5750999f6346/polymers-12-01397-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/1a8babf456ed/polymers-12-01397-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/ad46ab1aa87f/polymers-12-01397-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/503fc61cc748/polymers-12-01397-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/2a12a3814edb/polymers-12-01397-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/10fabbf072b9/polymers-12-01397-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/9ba180e48f3b/polymers-12-01397-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/5750999f6346/polymers-12-01397-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/1a8babf456ed/polymers-12-01397-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09bd/7362228/ad46ab1aa87f/polymers-12-01397-g007.jpg

相似文献

[1]
Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis.

Polymers (Basel). 2020-6-22

[2]
Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy.

Front Bioeng Biotechnol. 2021-6-25

[3]
Stimuli-responsive Polymeric Nanosystems for Therapeutic Applications.

Curr Pharm Des. 2022

[4]
Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review.

Int J Biol Macromol. 2023-1-31

[5]
Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery.

Saudi Pharm J. 2020-3

[6]
Stimuli-responsive nanocarriers for intracellular delivery.

Biophys Rev. 2017-12

[7]
Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.

Chem Soc Rev. 2013-4-3

[8]
Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances.

ACS Appl Mater Interfaces. 2016-8-11

[9]
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

Biomaterials. 2013-2-14

[10]
Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications.

Adv Drug Deliv Rev. 2012-2-11

引用本文的文献

[1]
Nano-Phytomedicine: Harnessing Plant-Derived Phytochemicals in Nanocarriers for Targeted Human Health Applications.

Molecules. 2025-7-29

[2]
Stimuli-Responsive Drug Delivery Systems for Enhanced Melanoma Immunotherapy.

Drug Des Devel Ther. 2025-8-7

[3]
Application of Nanocomposites-Based Polymers on Managing Fungal Diseases in Crop Production.

Plant Pathol J. 2025-8

[4]
Advanced nanotheranostic approaches for targeted glioblastoma treatment: a synergistic fusion of CRISPR-Cas gene editing, AI-driven tumor profiling, and BBB-modulation.

Med Oncol. 2025-8-7

[5]
Tumor Niche Influences the Activity and Delivery of Anticancer Drugs: Pharmacology Meets Chemistry.

Pharmaceuticals (Basel). 2025-7-17

[6]
Nanocarrier-based targeted drug delivery for Alzheimer's disease: addressing neuroinflammation and enhancing clinical translation.

Front Pharmacol. 2025-5-14

[7]
Emerging nanotechnologies and their role in early ovarian cancer detection, diagnosis and interventions.

J Ovarian Res. 2025-5-7

[8]
Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine.

Pharmaceutics. 2025-3-15

[9]
Revolutionizing Cancer Immunotherapy: Emerging Nanotechnology-Driven Drug Delivery Systems for Enhanced Therapeutic Efficacy.

ACS Meas Sci Au. 2024-11-15

[10]
Carbon Nanodots-Based Polymer Nanocomposite: A Potential Drug Delivery Armament of Phytopharmaceuticals.

Polymers (Basel). 2025-1-29

本文引用的文献

[1]
Thermoresponsive Gelatin Nanogels.

ACS Macro Lett. 2014-11-18

[2]
Fucoidan-Based Theranostic Nanogel for Enhancing Imaging and Photodynamic Therapy of Cancer.

Nanomicro Lett. 2020-2-4

[3]
Leveraging H O Levels for Biomedical Applications.

Adv Biosyst. 2017-9

[4]
808 nm-activable core@multishell upconverting nanoparticles with enhanced stability for efficient photodynamic therapy.

J Nanobiotechnology. 2020-6-5

[5]
Glycan-Functionalized Collagen Hydrogels Modulate the Glycoenvironment of a Neuronal Primary Culture.

Biomacromolecules. 2020-7-13

[6]
Calcium alendronate-coated composite scaffolds promote osteogenesis of ADSCs via integrin and FAK/ERK signalling pathways.

J Mater Chem B. 2020-8-12

[7]
Salt-Induced Shape-Memory Effect in Gelatin-Based Hydrogels.

Biomacromolecules. 2020-6-8

[8]
Recent Advances in Liposomal Drug Delivery System of Quercetin for Cancer Targeting: A Mechanistic Approach.

Curr Drug Deliv. 2020

[9]
Recent Advances of Bioresponsive Nano-Sized Contrast Agents for Ultra-High-Field Magnetic Resonance Imaging.

Front Chem. 2020-3-20

[10]
Design, engineering and structural integrity of electro-responsive carbon nanotube- based hydrogels for pulsatile drug release.

J Mater Chem B. 2013-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索