Suppr超能文献

一种将影像组学和卫星灶数量作为颅内血肿扩大影像预测指标的列线图模型

A Nomogram Model of Radiomics and Satellite Sign Number as Imaging Predictor for Intracranial Hematoma Expansion.

作者信息

Xu Wen, Ding Zhongxiang, Shan Yanna, Chen Wenhui, Feng Zhan, Pang Peipei, Shen Qijun

机构信息

Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Radiology, The First Hospital of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Front Neurosci. 2020 Jun 4;14:491. doi: 10.3389/fnins.2020.00491. eCollection 2020.

Abstract

BACKGROUND

We aimed to construct and validate a nomogram model based on the combination of radiomic features and satellite sign number for predicting intracerebral hematoma expansion.

METHODS

A total of 129 patients from two institutions were enrolled in this study. The preprocessed initial CT images were used for radiomic feature extraction. The ANOVA-Kruskal-Wallis test and least absolute shrinkage and selection operator regression were applied to identify candidate radiomic features and construct the Radscore. A nomogram model was developed by integrating the Radscore with a satellite sign number. The discrimination performance of the proposed model was evaluated by receiver operating characteristic (ROC) analysis, and the predictive accuracy was assessed a calibration curve. Decision curve analysis (DCA) and Kaplan-Meier (KM) survival analysis were performed to evaluate the clinical value of the model.

RESULTS

Four optimal features were ultimately selected and contributed to the Radscore construction. A positive correlation was observed between the satellite sign number and Radscore (Pearson's : 0.451). The nomogram model showed the best performance with high area under the curves in both training cohort (0.881, sensitivity: 0.973; specificity: 0.787) and external validation cohort (0.857, sensitivity: 0.950; specificity: 0.766). The calibration curve, DCA, and KM analysis indicated the high accuracy and clinical usefulness of the nomogram model for hematoma expansion prediction.

CONCLUSION

A nomogram model of integrated radiomic signature and satellite sign number based on noncontrast CT images could serve as a reliable and convenient measurement of hematoma expansion prediction.

摘要

背景

我们旨在构建并验证一种基于影像组学特征与卫星征数量相结合的列线图模型,用于预测脑内血肿扩大。

方法

本研究纳入了来自两个机构的129例患者。对预处理后的初始CT图像进行影像组学特征提取。应用方差分析 - 克鲁斯卡尔 - 沃利斯检验和最小绝对收缩与选择算子回归来识别候选影像组学特征并构建Radscore。通过将Radscore与卫星征数量整合来开发列线图模型。通过受试者操作特征(ROC)分析评估所提出模型的鉴别性能,并通过校准曲线评估预测准确性。进行决策曲线分析(DCA)和卡普兰 - 迈耶(KM)生存分析以评估模型的临床价值。

结果

最终选择了四个最佳特征并用于构建Radscore。观察到卫星征数量与Radscore之间存在正相关(皮尔逊相关系数:0.451)。列线图模型在训练队列(曲线下面积为0.881,灵敏度:0.973;特异度:0.787)和外部验证队列(曲线下面积为0.857,灵敏度:0.950;特异度:0.766)中均表现出最佳性能,曲线下面积较高。校准曲线、DCA和KM分析表明列线图模型在预测血肿扩大方面具有较高的准确性和临床实用性。

结论

基于非增强CT图像的整合影像组学特征和卫星征数量的列线图模型可作为预测血肿扩大的可靠且便捷的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9797/7287169/d3ccc2bbe486/fnins-14-00491-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验