Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
Department of Physiology, University of Toronto, Toronto, ON, Canada.
Front Neural Circuits. 2020 Jun 9;14:32. doi: 10.3389/fncir.2020.00032. eCollection 2020.
In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent and studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.
在大脑中,存在着广泛的不同结构、电路、细胞类型和细胞遗传表达谱。虽然这种多样性常常使我们难以清楚地了解大脑的工作原理,但对不同脑区进行的类似研究的仔细分析,可以提示神经元组织的共性。这反过来又可以深入理解对信息在整个大脑中的处理至关重要的基本电路组成部分。在这篇综述中,我们概述了最近在不同皮层区域进行的研究,这些研究旨在描述专门抑制 GABA 能中间神经元的血管活性肠肽 (VIP) 和/或钙视网膜蛋白 (CR) 表达细胞。这样做的目的是,在皮质结构中,中间神经元特异性细胞通常专门从事兴奋性神经元的突触抑制,这可以开启外部输入到兴奋性神经元的整合和可塑性。与此一致的是,激活中间神经元特异性细胞可以提高动物在各种涉及学习、记忆形成和感官辨别等行为任务中的表现,并且可能代表不同病理条件下治疗干预的关键目标。因此,不同皮质结构中的中间神经元特异性细胞是信息处理和正常大脑功能的必要网络组成部分。