Suppr超能文献

利用收缩期局部机械负荷预测心室纤维方向。

Using Systolic Local Mechanical Load to Predict Fiber Orientation in Ventricles.

作者信息

Washio Takumi, Sugiura Seiryo, Okada Jun-Ichi, Hisada Toshiaki

机构信息

UT-Heart Inc., Kashiwanoha Campus Satellite, Kashiwa, Japan.

Future Center Initiative, Kashiwanoha Campus Satellite, University of Tokyo, Kashiwa, Japan.

出版信息

Front Physiol. 2020 Jun 9;11:467. doi: 10.3389/fphys.2020.00467. eCollection 2020.

Abstract

A simple rule adopted for myofiber reorientation in the ventricles is pursued by taking the microscopic branching network of myocytes into account. The macroscopic active tension generated on the microscopic branching structure is modeled by a multidirectional active stress tensor, which is defined as a function of the strains in the branching directions. In our reorientation algorithm, the principal direction of the branching network is updated so that it turns in the direction of greater active tension in the isovolumetric systole. Updates are performed step-by-step after the mechanical equilibrium has been attained with the current fiber structure. Starting from a nearly flat distribution of the principal fiber orientation along the circumferential direction, the reoriented fiber helix angles range from 70 to 40° at epicardium and from 60 to 80° at endocardium, in agreement with experimental observations. The helical ventricular myocardial band of Torrent-Guasp's model and the apical spiral structure of Rushmer's model are also reconstructed by our algorithm. Applying our algorithm to the infarcted ventricle model, the fiber structure near the infarcted site is remodeled so that the helix angle becomes steeper with respect to the circumferential direction near the epicardial surface. Based on our numerical analysis, we draw the following conclusions. (i) The multidirectional active tension based on the microscopic branching network is potentially used to seek tighter connection with neighboring aggregates. (ii) The thickening and thinning transitions in response to active tension in each myocyte allow the macroscopic principal fiber orientation of the microscopic branching network to move toward the direction of greater active tension. (iii) The force-velocity relationship is the key factor in transferring the fiber shortening strain to the magnitude of active tensions used in the myofiber reorientation. (iv) The algorithm naturally leads to homogeneity in the macroscopic active tension and the fiber shortening strain, and results in near-optimal pumping performance. (v) However, the reorientation mechanism may degrade the pumping performance if there is severely inhomogeneous contractility resulting from infarction. Our goal is to provide a tool to predict the fiber architecture of various heart disease patients for numerical simulations of their treatment plans.

摘要

通过考虑心肌细胞的微观分支网络,采用了一种用于心室肌纤维重新定向的简单规则。在微观分支结构上产生的宏观主动张力由多向主动应力张量建模,该张量被定义为分支方向上应变的函数。在我们的重新定向算法中,分支网络的主方向会被更新,使其在等容收缩期转向更大主动张力的方向。在与当前纤维结构达到力学平衡后,逐步进行更新。从沿圆周方向的主纤维方向几乎平坦的分布开始,重新定向后的纤维螺旋角在心肌外膜处为70至40°,在心内膜处为60至80°,与实验观察结果一致。Torrent - Guasp模型的螺旋状心室心肌带和Rushmer模型的心尖螺旋结构也通过我们的算法进行了重建。将我们的算法应用于梗死心室模型时,梗死部位附近的纤维结构会被重塑,使得在心外膜表面附近相对于圆周方向的螺旋角变得更陡。基于我们的数值分析,我们得出以下结论。(i)基于微观分支网络的多向主动张力可能用于寻求与相邻聚集体更紧密的连接。(ii)每个心肌细胞响应主动张力的增厚和变薄转变允许微观分支网络的宏观主纤维方向朝着更大主动张力的方向移动。(iii)力 - 速度关系是将纤维缩短应变传递到用于肌纤维重新定向的主动张力大小的关键因素。(iv)该算法自然会导致宏观主动张力和纤维缩短应变的均匀性,并产生接近最优的泵血性能。(v)然而,如果梗死导致严重的收缩性不均匀,重新定向机制可能会降低泵血性能。我们的目标是提供一种工具,用于预测各种心脏病患者的纤维结构,以便对他们的治疗方案进行数值模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d5a/7295989/986fcf6dc266/fphys-11-00467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验