Suppr超能文献

转录组的比较分析揭示了子实体不同发育阶段的分子机制。

Comparative analysis of transcriptomes revealed the molecular mechanism of development of at different stages of fruiting bodies.

作者信息

Tang Xian, Ding Xiang, Hou Yi-Ling

机构信息

Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China.

College of Environmental Science and Engineering, China West Normal University, 1# Shida Road, Nanchong, 637009 Sichuan Province China.

出版信息

Food Sci Biotechnol. 2020 Jan 28;29(7):939-951. doi: 10.1007/s10068-020-00732-8. eCollection 2020 Jul.

Abstract

The purpose of the study is to investigate the molecular mechanisms of development of fruiting body at the primordial stage (TM-1), the intermediate stage (TM-2) and the mature stage (TM-3) using RNA-Seq sequencing technology. The analysis of gene expression level revealed that the and gene were the key genes in the primordial stage of by regulating cytokinesis, protein synthesis, and cell growth. And the , , , and gene were the key genes in the mature stage of by regulating energy metabolism and protein synthesis. Differential expression genes (DEGs) analysis results showed that , , , and were the key DEGs regulating cell cycle genes of from primordial stage to intermediate stage. And , , , and genes were the key DEGs for the meiosis and sporogenesis of from the intermediate stage to the mature stage.

摘要

本研究的目的是利用RNA-Seq测序技术,研究子实体在原基阶段(TM-1)、中间阶段(TM-2)和成熟阶段(TM-3)发育的分子机制。基因表达水平分析表明,[具体基因1]和[具体基因2]基因是[物种名称]原基阶段通过调节胞质分裂、蛋白质合成和细胞生长的关键基因。而[具体基因3]、[具体基因4]、[具体基因5]和[具体基因6]基因是[物种名称]成熟阶段通过调节能量代谢和蛋白质合成的关键基因。差异表达基因(DEGs)分析结果表明,[具体基因7]、[具体基因8]、[具体基因9]、[具体基因10]和[具体基因11]是调节[物种名称]从原基阶段到中间阶段细胞周期基因的关键DEGs。并且,[具体基因12]、[具体基因13]、[具体基因14]、[具体基因15]和[具体基因16]基因是[物种名称]从中间阶段到成熟阶段减数分裂和孢子发生的关键DEGs。

相似文献

1
Comparative analysis of transcriptomes revealed the molecular mechanism of development of at different stages of fruiting bodies.
Food Sci Biotechnol. 2020 Jan 28;29(7):939-951. doi: 10.1007/s10068-020-00732-8. eCollection 2020 Jul.
2
4
Chemical compositions and volatile compounds of from different geographical areas at different stages of maturity.
Food Sci Biotechnol. 2016 Feb 29;25(1):71-77. doi: 10.1007/s10068-016-0010-1. eCollection 2016.
5
Identification of upregulated genes in Tricholoma matsutake mycorrhiza.
FEMS Microbiol Lett. 2022 Sep 20;369(1). doi: 10.1093/femsle/fnac085.
7
Unusual genome expansion and transcription suppression in ectomycorrhizal Tricholoma matsutake by insertions of transposable elements.
PLoS One. 2020 Jan 24;15(1):e0227923. doi: 10.1371/journal.pone.0227923. eCollection 2020.
8
Effect of fairy ring bacteria on the growth of Tricholoma matsutake in vitro culture.
Mycorrhiza. 2018 Aug;28(5-6):411-419. doi: 10.1007/s00572-018-0828-x. Epub 2018 Mar 12.
9
Spore Dispersion of Tricholoma matsutake at a Pinus densiflora Stand in Korea.
Mycobiology. 2010 Sep;38(3):203-5. doi: 10.4489/MYCO.2010.38.3.203. Epub 2010 Sep 30.

引用本文的文献

本文引用的文献

1
A Comparative Transcriptome Analysis Reveals Physiological Maturation Properties of Mycelia in .
Genes (Basel). 2019 Sep 11;10(9):703. doi: 10.3390/genes10090703.
5
Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer.
Food Chem. 2019 Aug 30;290:32-39. doi: 10.1016/j.foodchem.2019.03.124. Epub 2019 Mar 25.
8
High-resolution visualization of H3 variants during replication reveals their controlled recycling.
Nat Commun. 2018 Aug 9;9(1):3181. doi: 10.1038/s41467-018-05697-1.
9
Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom).
J Microbiol. 2018 Jun;56(6):399-407. doi: 10.1007/s12275-018-7491-y. Epub 2018 Jun 1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验