Suppr超能文献

基于深度游走嵌入模型的多分子网络药物-靶点相互作用预测

Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model.

作者信息

Chen Zhan-Heng, You Zhu-Hong, Guo Zhen-Hao, Yi Hai-Cheng, Luo Gong-Xu, Wang Yan-Bin

机构信息

The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Bioeng Biotechnol. 2020 Jun 3;8:338. doi: 10.3389/fbioe.2020.00338. eCollection 2020.

Abstract

Predicting drug-target interactions (DTIs) is crucial in innovative drug discovery, drug repositioning and other fields. However, there are many shortcomings for predicting DTIs using traditional biological experimental methods, such as the high-cost, time-consumption, low efficiency, and so on, which make these methods difficult to widely apply. As a supplement, the method can provide helpful information for predictions of DTIs in a timely manner. In this work, a deep walk embedding method is developed for predicting DTIs from a multi-molecular network. More specifically, a multi-molecular network, also called molecular associations network, is constructed by integrating the associations among drug, protein, disease, lncRNA, and miRNA. Then, each node can be represented as a behavior feature vector by using a deep walk embedding method. Finally, we compared behavior features with traditional attribute features on an integrated dataset by using various classifiers. The experimental results revealed that the behavior feature could be performed better on different classifiers, especially on the random forest classifier. It is also demonstrated that the use of behavior information is very helpful for addressing the problem of sequences containing both self-interacting and non-interacting pairs of proteins. This work is not only extremely suitable for predicting DTIs, but also provides a new perspective for the prediction of other biomolecules' associations.

摘要

预测药物-靶点相互作用(DTIs)在创新药物发现、药物重新定位及其他领域至关重要。然而,使用传统生物学实验方法预测DTIs存在诸多缺点,如成本高、耗时、效率低等,这使得这些方法难以广泛应用。作为一种补充方法,其能够及时为DTIs的预测提供有用信息。在这项工作中,开发了一种深度游走嵌入方法,用于从多分子网络预测DTIs。更具体地说,通过整合药物、蛋白质、疾病、长链非编码RNA(lncRNA)和微小RNA(miRNA)之间的关联构建了一个多分子网络,也称为分子关联网络。然后,使用深度游走嵌入方法将每个节点表示为一个行为特征向量。最后,我们在一个整合数据集上使用各种分类器将行为特征与传统属性特征进行比较。实验结果表明,行为特征在不同分类器上表现更好,尤其是在随机森林分类器上。这也表明,使用行为信息对于解决包含自相互作用和非相互作用蛋白质对的序列问题非常有帮助。这项工作不仅极其适合预测DTIs,还为其他生物分子关联的预测提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3beb/7283956/d9f6ec72fc41/fbioe-08-00338-g001.jpg

相似文献

1
Prediction of Drug-Target Interactions From Multi-Molecular Network Based on Deep Walk Embedding Model.
Front Bioeng Biotechnol. 2020 Jun 3;8:338. doi: 10.3389/fbioe.2020.00338. eCollection 2020.
2
DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
Interdiscip Sci. 2022 Jun;14(2):311-330. doi: 10.1007/s12539-021-00488-7. Epub 2021 Nov 3.
7
Predicting drug-target interaction network using deep learning model.
Comput Biol Chem. 2019 Jun;80:90-101. doi: 10.1016/j.compbiolchem.2019.03.016. Epub 2019 Mar 25.
8
DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network.
Comput Biol Med. 2021 Sep;136:104676. doi: 10.1016/j.compbiomed.2021.104676. Epub 2021 Jul 29.
9
DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
Methods. 2022 Aug;204:269-277. doi: 10.1016/j.ymeth.2022.02.007. Epub 2022 Feb 24.
10
Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
Mol Inform. 2014 Oct;33(10):669-81. doi: 10.1002/minf.201400009. Epub 2014 Sep 26.

引用本文的文献

1
Simplicity within biological complexity.
Bioinform Adv. 2025 Feb 6;5(1):vbae164. doi: 10.1093/bioadv/vbae164. eCollection 2025.
2
Artificial intelligence and machine learning applications for cultured meat.
Front Artif Intell. 2024 Sep 24;7:1424012. doi: 10.3389/frai.2024.1424012. eCollection 2024.
3
An NLP-based technique to extract meaningful features from drug SMILES.
iScience. 2024 Feb 8;27(3):109127. doi: 10.1016/j.isci.2024.109127. eCollection 2024 Mar 15.
5
Role of Artificial Intelligence in Drug Discovery and Target Identification in Cancer.
Curr Drug Deliv. 2024;21(6):870-886. doi: 10.2174/1567201821666230905090621.
7
GraphCPIs: A novel graph-based computational model for potential compound-protein interactions.
Mol Ther Nucleic Acids. 2023 May 4;32:721-728. doi: 10.1016/j.omtn.2023.04.030. eCollection 2023 Jun 13.
8
The curse and blessing of abundance-the evolution of drug interaction databases and their impact on drug network analysis.
Gigascience. 2022 Dec 28;12(1). doi: 10.1093/gigascience/giad011. Epub 2023 Mar 9.
9
Graph neural networks for materials science and chemistry.
Commun Mater. 2022;3(1):93. doi: 10.1038/s43246-022-00315-6. Epub 2022 Nov 26.
10
Multimodal multi-task deep neural network framework for kinase-target prediction.
Mol Divers. 2023 Dec;27(6):2491-2503. doi: 10.1007/s11030-022-10565-8. Epub 2022 Nov 11.

本文引用的文献

2
LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse.
Nucleic Acids Res. 2019 Jan 8;47(D1):D140-D144. doi: 10.1093/nar/gky1051.
3
HMDD v3.0: a database for experimentally supported human microRNA-disease associations.
Nucleic Acids Res. 2019 Jan 8;47(D1):D1013-D1017. doi: 10.1093/nar/gky1010.
4
The Comparative Toxicogenomics Database: update 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D948-D954. doi: 10.1093/nar/gky868.
5
Large-scale comparison of machine learning methods for drug target prediction on ChEMBL.
Chem Sci. 2018 Jun 6;9(24):5441-5451. doi: 10.1039/c8sc00148k. eCollection 2018 Jun 28.
6
Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction.
Curr Drug Metab. 2019;20(3):194-202. doi: 10.2174/1389200219666180821094047.
7
miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions.
Nucleic Acids Res. 2018 Jan 4;46(D1):D296-D302. doi: 10.1093/nar/gkx1067.
8
DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
9
lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs.
Nucleic Acids Res. 2018 Jan 4;46(D1):D276-D280. doi: 10.1093/nar/gkx1004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验