Suppr超能文献

利用索赔数据将乳腺癌、肺癌或结直肠癌患者分配给开处方的肿瘤学家。

Using claims data to attribute patients with breast, lung, or colorectal cancer to prescribing oncologists.

作者信息

Fishman Ezra, Barron John, Liu Ying, Gautam Santosh, Bekelman Justin E, Navathe Amol S, Fisch Michael J, Nguyen Ann, Sylwestrzak Gosia

机构信息

Translational Research, HealthCore, Inc., Wilmington, DE, USA,

Clinical & Scientific Leadership, HealthCore, Inc., Wilmington, DE, USA.

出版信息

Pragmat Obs Res. 2019 Mar 29;10:15-22. doi: 10.2147/POR.S197252. eCollection 2019.

Abstract

BACKGROUND

Alternative payment models frequently require attribution of patients to individual physicians to assign cost and quality outcomes. Our objective was to examine the performance of three methods for attributing a patient with cancer to the likeliest physician prescriber of anticancer drugs for that patient using administrative claims data.

METHODS

We used the HealthCore Integrated Research Environment to identify patients who had claims for anticancer medication along with diagnosis codes for breast, lung, or colorectal lung cancer between July 2013 and September 2017. The index date was the first date with a record for anticancer medication and cancer diagnosis code. Included patients had continuous medical coverage from 6 months before index to at least 7 days after index. Patients who received anticancer drugs during the 6 months prior to index were excluded. The three methods attributed each patient to the physician with whom the patient had the most evaluation and management (E&M) visits within a 90-day window around the index date (Method 1); the most E&M visits with no time window (Method 2); or the E&M visit nearest in time to the index date (Method 3). We assessed the performance of the methods using the percentage of the study cohort successfully attributed to a physician, and the positive predictive value (PPV) relative to available physician-reported data on patient(s) they treat.

RESULTS

In total, 70,641 patients were available for attribution to physicians. Percentages of the study cohort attributed to a physician were: Method 1, 92.6%; Method 2, 96.9%; and Method 3, 96.9%. PPVs for each method were 84.4%, 80.6%, and 75.8%, respectively.

CONCLUSION

We found that a claims-based algorithm - specifically, a plurality method with a 90-day time window - correctly attributed nearly 85% of patients to a prescribing physician. Claims data can reliably identify prescribing physicians in oncology.

摘要

背景

替代支付模式通常需要将患者归因于个体医生,以分配成本和质量结果。我们的目标是使用行政索赔数据,研究三种将癌症患者归因于该患者最有可能的抗癌药物开处方医生的方法的性能。

方法

我们使用HealthCore综合研究环境,识别在2013年7月至2017年9月期间有抗癌药物索赔以及乳腺癌、肺癌或结直肠癌诊断代码的患者。索引日期是首次出现抗癌药物记录和癌症诊断代码的日期。纳入的患者在索引日期前6个月至索引日期后至少7天有连续的医疗保险。排除在索引日期前6个月内接受抗癌药物治疗的患者。这三种方法将每位患者归因于在索引日期前后90天窗口内与该患者进行最多评估和管理(E&M)就诊的医生(方法1);无时间窗口的最多E&M就诊医生(方法2);或与索引日期时间最接近的E&M就诊医生(方法3)。我们使用成功归因于医生的研究队列百分比以及相对于医生报告的他们治疗的患者可用数据的阳性预测值(PPV)来评估这些方法的性能。

结果

总共有70641名患者可归因于医生。归因于医生的研究队列百分比分别为:方法1,92.6%;方法2,96.9%;方法3,96.9%。每种方法的PPV分别为84.4%、80.6%和75.8%。

结论

我们发现基于索赔的算法——具体来说,一种有90天时间窗口的多数方法——将近85%的患者正确归因于开处方医生。索赔数据可以可靠地识别肿瘤学中的开处方医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb17/6446985/4402afaf44e0/por-10-015Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验