Suppr超能文献

免疫信息学研究搜索 SARS-CoV-2 刺突糖蛋白表位作为潜在疫苗。

Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine.

机构信息

Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México.

Laboratorio de medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México.

出版信息

J Biomol Struct Dyn. 2021 Aug;39(13):4878-4892. doi: 10.1080/07391102.2020.1780944. Epub 2020 Jun 25.

Abstract

The Coronavirus disease named COVID-19 is caused by the virus reported in 2019 first identified in China. The cases of this disease have increased and as of June 1, 2020 there are more than 216 countries affected. Pharmacological treatments have been proposed based on the resemblance of the HIV virus. With regard to prevention there is no vaccine, thus, we proposed to explore the spike protein due to its presence on the viral surface, and it also contains the putative viral entry receptor as well as the fusion peptide (important in the genome release). In this work we have employed techniques such as immunoinformatics tools which permit the identification of potential immunogenic regions on the viral surface (spike glycoprotein). From these analyses, we identified four epitopes E332-370, E627-651, E440-464 and E694-715 that accomplish essential features such as promiscuity, conservation grade, exposure and universality, and they also form stable complexes with MHCII molecule. We suggest that these epitopes could generate a specific immune response, and thus, they could be used for future applications such as the design of new epitope vaccines against the SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

摘要

新型冠状病毒病(COVID-19)是由 2019 年在中国首次发现的病毒引起的。截至 2020 年 6 月 1 日,已有超过 216 个国家受到该疾病的影响。根据 HIV 病毒的相似性提出了药物治疗方法。关于预防,目前还没有疫苗,因此,我们提出探索病毒表面存在的刺突蛋白,因为它包含假定的病毒进入受体以及融合肽(在基因组释放中很重要)。在这项工作中,我们使用了免疫信息学工具等技术,可以识别病毒表面上的潜在免疫原性区域(刺突糖蛋白)。通过这些分析,我们确定了四个表位 E332-370、E627-651、E440-464 和 E694-715,它们具有变异性、保守性、暴露性和通用性等重要特征,并且与 MHCII 分子形成稳定的复合物。我们认为这些表位可以引发特异性免疫反应,因此可以用于未来的应用,例如设计针对 SARS-CoV-2 的新型表位疫苗。

相似文献

1
Immunoinformatics study to search epitopes of spike glycoprotein from SARS-CoV-2 as potential vaccine.
J Biomol Struct Dyn. 2021 Aug;39(13):4878-4892. doi: 10.1080/07391102.2020.1780944. Epub 2020 Jun 25.
2
A vaccine built from potential immunogenic pieces derived from the SARS-CoV-2 spike glycoprotein: A computational approximation.
J Immunol Methods. 2022 Mar;502:113216. doi: 10.1016/j.jim.2022.113216. Epub 2022 Jan 7.
3
A rational design of a multi-epitope vaccine against SARS-CoV-2 which accounts for the glycan shield of the spike glycoprotein.
J Biomol Struct Dyn. 2022 Sep;40(15):7099-7113. doi: 10.1080/07391102.2021.1894986. Epub 2021 Mar 10.
5
Vaccine design based on 16 epitopes of SARS-CoV-2 spike protein.
J Med Virol. 2021 Apr;93(4):2115-2131. doi: 10.1002/jmv.26596. Epub 2020 Nov 1.
6
Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches.
J Biomol Struct Dyn. 2022 Apr;40(7):2917-2933. doi: 10.1080/07391102.2020.1844060. Epub 2020 Nov 9.
7
design of multi-epitope-based peptide vaccine against SARS-CoV-2 using its spike protein.
J Biomol Struct Dyn. 2022 Jul;40(11):5189-5202. doi: 10.1080/07391102.2020.1869092. Epub 2021 Jan 6.
8
T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research.
J Cell Mol Med. 2021 Jan;25(2):1274-1289. doi: 10.1111/jcmm.16200. Epub 2020 Dec 15.
9
Immuno-informatics approach for B-cell and T-cell epitope based peptide vaccine design against novel COVID-19 virus.
Vaccine. 2021 Feb 12;39(7):1087-1095. doi: 10.1016/j.vaccine.2021.01.011. Epub 2021 Jan 9.
10
designing of multi-epitope vaccine construct against human coronavirus infections.
J Biomol Struct Dyn. 2021 Nov;39(18):6903-6917. doi: 10.1080/07391102.2020.1804460. Epub 2020 Aug 10.

引用本文的文献

1
Insights into structural vaccinology harnessed for universal coronavirus vaccine development.
Clin Exp Vaccine Res. 2024 Jul;13(3):202-217. doi: 10.7774/cevr.2024.13.3.202. Epub 2024 Jul 31.
2
Two MP2CL5 Antigen Vaccines from Naegleria fowleri Stimulate the Immune Response against Meningitis in the BALB/c Model.
Infect Immun. 2023 Jul 18;91(7):e0018123. doi: 10.1128/iai.00181-23. Epub 2023 Jun 5.
3
The Advantage of Using Immunoinformatic Tools on Vaccine Design and Development for Coronavirus.
Vaccines (Basel). 2022 Oct 31;10(11):1844. doi: 10.3390/vaccines10111844.
5
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
6
Up State of the SARS-COV-2 Spike Homotrimer Favors an Increased Virulence for New Variants.
Front Med Technol. 2021 Jun 30;3:694347. doi: 10.3389/fmedt.2021.694347. eCollection 2021.
7
Designing Short Peptides to Block the Interaction of SARS-CoV-2 and Human ACE2 for COVID-19 Therapeutics.
Front Pharmacol. 2021 Aug 27;12:731828. doi: 10.3389/fphar.2021.731828. eCollection 2021.
8
Lessons Learned from Cutting-Edge Immunoinformatics on Next-Generation COVID-19 Vaccine Research.
Int J Pept Res Ther. 2021;27(4):2303-2311. doi: 10.1007/s10989-021-10254-4. Epub 2021 Jul 10.
9
An update on emerging therapeutics to combat COVID-19.
Basic Clin Pharmacol Toxicol. 2021 Aug;129(2):104-129. doi: 10.1111/bcpt.13600. Epub 2021 Jun 11.
10
Mutational heterogeneity in spike glycoproteins of severe acute respiratory syndrome coronavirus 2.
3 Biotech. 2021 May;11(5):236. doi: 10.1007/s13205-021-02791-y. Epub 2021 Apr 25.

本文引用的文献

1
Genotyping coronavirus SARS-CoV-2: methods and implications.
Genomics. 2020 Sep;112(5):3588-3596. doi: 10.1016/j.ygeno.2020.04.016. Epub 2020 Apr 27.
2
Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations.
Cell Discov. 2020 Feb 24;6:11. doi: 10.1038/s41421-020-0147-1. eCollection 2020.
4
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507. Epub 2020 Feb 19.
5
Emergence of SARS-like coronavirus poses new challenge in China.
J Infect. 2020 Mar;80(3):350-371. doi: 10.1016/j.jinf.2020.01.017. Epub 2020 Jan 30.
6
Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.
Lancet. 2020 Feb 22;395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30.
8
The Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020.
J Clin Med. 2020 Jan 24;9(2):330. doi: 10.3390/jcm9020330.
9
Cross-species transmission of the newly identified coronavirus 2019-nCoV.
J Med Virol. 2020 Apr;92(4):433-440. doi: 10.1002/jmv.25682.
10
Origin and evolution of pathogenic coronaviruses.
Nat Rev Microbiol. 2019 Mar;17(3):181-192. doi: 10.1038/s41579-018-0118-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验