Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
J Biomol Struct Dyn. 2022 Sep;40(15):7099-7113. doi: 10.1080/07391102.2021.1894986. Epub 2021 Mar 10.
The ongoing global health crisis caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus which leads to Coronavirus Disease 2019 (COVID-19) has impacted not only the health of people everywhere, but the economy in nations across the world. While vaccine candidates and therapeutics are currently undergoing clinical trials, there is a lack of proven effective treatments or cures for COVID-19. In this study, we have presented a synergistic computational platform, including molecular dynamics simulations and immunoinformatics techniques, to rationally design a multi-epitope vaccine candidate for COVID-19. This platform combines epitopes across Linear B Lymphocytes (LBL), Cytotoxic T Lymphocytes (CTL) and Helper T Lymphocytes (HTL) derived from both mutant and wild-type spike glycoproteins from SARS-CoV-2 with diverse protein conformations. In addition, this vaccine construct also takes the considerable glycan shield of the spike glycoprotein into account, which protects it from immune response. We have identified a vaccine candidate (a 35.9 kDa protein), named COVCCF, which is composed of 5 LBL, 6 HTL, and 6 CTL epitopes from the spike glycoprotein of SARS-CoV-2. Using multi-dose immune simulations, COVCCF induces elevated levels of immunoglobulin activity (IgM, IgG1, IgG2), and induces strong responses from B lymphocytes, CD4 T-helper lymphocytes, and CD8 T-cytotoxic lymphocytes. COVCCF induces cytokines important to innate immunity, including IFN-γ, IL4, and IL10. Additionally, COVCCF has ideal pharmacokinetic properties and low immune-related toxicities. In summary, this study provides a powerful, computational vaccine design platform for rapid development of vaccine candidates (including COVCCF) for effective prevention of COVID-19.Communicated by Ramaswamy H. Sarma.
由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)引起的持续全球健康危机不仅影响了各地人民的健康,也影响了世界各国的经济。虽然疫苗候选物和疗法目前正在进行临床试验,但对于 COVID-19 缺乏经过验证的有效治疗方法或治愈方法。在这项研究中,我们提出了一个协同的计算平台,包括分子动力学模拟和免疫信息学技术,以合理设计针对 COVID-19 的多表位疫苗候选物。该平台结合了来自 SARS-CoV-2 的突变型和野生型刺突糖蛋白的线性 B 淋巴细胞(LBL)、细胞毒性 T 淋巴细胞(CTL)和辅助性 T 淋巴细胞(HTL)的表位,以及多种蛋白构象。此外,该疫苗结构还考虑了刺突糖蛋白的大量糖屏蔽,这使其免受免疫反应的影响。我们已经确定了一种名为 COVCCF 的疫苗候选物(一种 35.9 kDa 的蛋白质),它由来自 SARS-CoV-2 刺突糖蛋白的 5 个 LBL、6 个 HTL 和 6 个 CTL 表位组成。通过多剂量免疫模拟,COVCCF 可诱导免疫球蛋白活性(IgM、IgG1、IgG2)升高,并诱导 B 淋巴细胞、CD4 T 辅助淋巴细胞和 CD8 T 细胞毒性淋巴细胞产生强烈反应。COVCCF 诱导对先天免疫很重要的细胞因子,包括 IFN-γ、IL4 和 IL10。此外,COVCCF 具有理想的药代动力学特性和低免疫相关毒性。总之,这项研究为快速开发针对 COVID-19 的疫苗候选物(包括 COVCCF)提供了一个强大的计算疫苗设计平台,以有效预防 COVID-19。由 Ramaswamy H. Sarma 交流。